
An Efficient and Composable Parallel Task

Programming Library

Chun-Xun Lin

ECE Dept, UIUC

Urbana, IL, US

clin99@illinois.edu

Tsung-Wei Huang

ECE Dept, University of Utah

Salt Lake City, UT, US

twh760812@gmail.com

Guannan Guo

ECE Dept, UIUC

Urbana, IL, US

gguo4@illinois.edu

Martin D. F. Wong

ECE Dept, UIUC

Urbana, IL, US

mdfwong@illinois.edu

Abstract—Composability is a key component to improve pro-
grammers’ productivity in writing fast market-expanding appli-
cations such as parallel machine learning algorithms and big data
analytics. These applications exhibit both regular and irregular
compute patterns, and are often combined with other functions
or libraries to compose a larger program. However, composable
parallel processing has taken a back seat in many existing parallel
programming libraries, making it difficult to achieve modularity
in large-scale parallel programs. In this paper, we introduce a
new parallel task programming library using composable tasking
graphs. Our library efficiently supports task parallelism together
with an intuitive task graph construction and flexible execution
API set to enable reusable and composable task dependency
graphs. Developers can quickly compose a large parallel program
from small and modular parallel building blocks, and easily
deploy the program on a multicore machine. We have evaluated
our library on real-world applications. Experimental results
showed our library can achieve comparable performance to Intel
Threading Building Blocks with less coding effort.

Index Terms—parallel programming, multithreading

I. INTRODUCTION

The key to make developers productive in writing software

is composability. We use libraries written by other developers

to compose a large program, or we decompose a job into

smaller pieces to tame the complexity in software develop-

ment. Composability is especially important in developing

fast market-expanding applications such as high-performance

machine learning, data analytics, and parallel simulation en-

gines [1]. These applications exhibit both regular and irregular

compute patterns, and are often combined with other func-

tions to compose large software that will be deployed on a

multicore machine or a distributed cloud [2], [3]. However,

composable parallel processing is rarely addressed as the first-

class concept by existing parallel programming libraries [4].

Many libraries were designed to solve a single hard problem as

fast as possible, leaving users to decide composition with their

own practice. This can create a lot of pain and data engineering

tasks for developers of different teams to collaborate on a

large parallel application. Some common problems include

confusing API mix-uses, unwanted coupling layers, error-

prone dependency wrappers, inconsistent threading models,

and suboptimal scheduling results.

This work is supported by NSF Grant CCF-1718883 and DARPA Grant
FA 8650-18-2-7843.

The traditional interface for program decomposition is func-

tion call. Developers break down a large sequential program

into a specific set of tasks each wrapped in a function call

with clear definition of data exchange. These function calls are

often modular and reusable to make the codebase maintainable

and readable. However, composable parallel programming is

way more challenging. Modern parallel workloads typically

combine a broad mix of algorithms, functions, and libraries.

Each library manages its own threads and task execution,

making it difficult to perform optimization across different

libraries. When coupling these software pieces together, we

need to tackle the dependencies both inside and outside the

libraries. Some libraries are already parallel and they are

being used by other parallel programs and so forth. There are

many practical issues to consider such as thread management,

resource over-subscription, and concurrency controls. As a

result, the lack of a clear and unified interface has a serious

impact on performance, even when individual libraries are

heavily optimized.

Fig. 1. Using our composable task dependency graph to describe a parallel
neural network training workload. Taskflow object A represents one training
iteration and is used to compose taskflow object B for the entire training
procedure.

In this paper, we introduce a powerful parallel programming

model that enables efficient composition. Our model is built on

top of the modern C++ tasking library, Cpp-Taskflow [5], but

largely enhanced its capability with two key design changes:

(1) separating the task dependency graph and execution kernel

and (2) making the task dependency graph reusable and

composable. In our model, a taskflow object consists of a

composable task dependency graph and user-friendly APIs

to facilitate the creation of modular and reusable parallel

compute patterns and libraries. These libraries can recursively

compose large and complex parallel computations on a sin-

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

gle machine, taking advantage of multicore processing while

sharing thread resources to minimize overhead. Figure 1 gives

an example of using taskflow objects to describe a parallel

training algorithm of a deep neural network (DNN). Taskflow

object A represents a training pipeline. Taskflow object B

is composed of multiple As and other tasks to complete

the training procedure. Also, users can easily couple B with

other parallel computations. There is no redundancy from the

programmability standpoint. We summarize our contributions

as follows:

• A new composable parallel programming model. We

developed a composable task interface to enable efficient

composition of parallel workloads. Our library lets users

quickly describe a large parallel program through composi-

tion of modular and reusable task graphs that embed both

regular and irregular compute patterns. The program runs on

a multicore machine with automatic scheduling optimization

across different layers of composed tasks.

• A unified task composition interface. We developed a

unified task graph construction interface that can capture

a diverse set of tasks from single sequential functions

to large parallel dependent tasks or even out-of-context

executions such as third-party calls and process forks. The

unified interface empowers developers with both explicit

and implicit task graph composition to explore cross-layer

optimizations of their parallel workloads.

• A simple and efficient composition API. We developed

a user-friendly API to describe task dependency graph

composition using modern C++17 syntax. Users can fully

take advantage of the rich features of our engine together

with robust standard C++ libraries to productively compose

many parallel applications. Our library effectively separates

users from low-level difficult concurrency details and offers

transparent scaling to many cores and future hardware

generation.

Our work highlights the interface for composing parallel

computing workloads as an important area to work in order

to embrace high performance and high developer productivity

at the same time. Today’s parallel workloads are large and

complex, and are often combined with many sub-components

of parallel computations developed by different people. Most

existing parallel programming libraries feature domain-specific

functions to help users optimize their workloads but require

them to fully understand the entire program structure. This in-

evitably degrades the productivity of developers to collaborate

on large projects through efficient composition. Our library

gives developers enough freedom to implement their own

computations, while supporting the performance optimizations

across libraries.

II. COMPOSABLE PARALLEL PROCESSING

In this section, we discuss in detail our composable parallel

task programming library Cpp-Taskflow v21.

1Source code is available in [6]

A. Cpp-Taskflow: A Modern C++ Parallel Task Programming

Library

We developed our composable task interface on top of

Cpp-Taskflow, an open-source parallel programming library

based on task dependency graphs [5]. Cpp-Taskflow leverages

the power of modern C++ and task-based approaches to

enable efficient implementations of parallel decomposition

strategies. Users focus on high-level description of dependent

tasks for their parallel workloads, leaving difficult details such

as concurrency controls, work stealing, and scheduling to

the library. Cpp-Taskflow supports both static and dynamic

tasking in a uniform fashion. Static tasking lets users create

task dependency graphs at programming time while dynamic

tasking occurs at runtime. However, the ordinary task depen-

dency graph in Cpp-Taskflow is not composable nor reusable.

Like other libraries, the lack of composability prevents users

from modular design to reuse available components of heavily

refined task graphs. Our goal is thus to enable a composable

task interface to enhance the capability of Cpp-Taskflow.

B. A New Task Dependency Graph

Cpp-Taskflow v2 introduces a new composable task inter-

face, the tf::Taskflow class. tf::Taskflow is the main gateway

to create a composable task dependency graph. It inherits all

the task construction methods from Cpp-Taskflow. Listing 1

demonstrates how to create a task dependency graph with two

tasks A and B where B runs after A and B spawns a new

task B1 during runtime. Cpp-Taskflow v2 separates the task

dependency graph from executor. Users now have full control

over their task dependency graphs but are also responsible for

their lifetime.

1 t f : : T a s k f l o w t a s k f l o w ;
2

3 / / Add a s t a t i c t a s k
4 a u t o taskA = t a s k f l o w . emplace ([] () {
5 s t d : : c o u t << ” Task A\n ” ;
6 }) ;
7

8 / / Dynamic t a s k i n g
9 a u t o taskB = t a s k f l o w . emplace ([] (a u t o &subf low){

10 s t d : : c o u t << ” Task B\n ” ;
11 subf low . emplace ([] () {
12 s t d : : c o u t << ” Task B1\n ” ;
13 }) ;
14 }) ;
15

16 taskA . p r e c e d e (taskB) ;

Listing 1. Create a task dependency graph of two dependent static tasks and
one dynamic task.

C. Execute a Task Dependency Graph

A significant change by Cpp-Taskflow v2 is the decou-

pling of executor and task graph. Cpp-Taskflow v2 defines

tf::Executor class that has a rich set of methods to run a

task dependency graph. A task dependency graph can be

run by an executor multiple times in arbitrary order. Users

can also give a predicate to specify the stopping criteria.

Listing 2 demonstrates a set of common methods to run a task

dependency graph. Line 1:3 creates a taskflow object and adds

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

some tasks. Line 6 creates an executor. An executor is nothing

but a pluggable scheduler to dispatch tasks to threads in a

shared pool. The simplest way is to execute a task dependency

graph only once via the run method (line 9). Alternatively, users

can call run n to run a task dependency graph multiple times

(line 13). The bottommost call is run until (line 19), which

keeps running until the predicate becomes true. All methods

accept a callable object as a callback after the task execution

completes. To enable more asynchronous control, each of these

methods returns a std::future for users to inspect the execution

status or incorporate non-blocking program flow. It should be

noticed that running a task dependency graph multiple times

exhibits the most basic composability, by which the same

graph is encapsulated in a linear chain of tasks.

1 t f : : T a s k f l o w t a s k f l o w ;
2

3 / / Add some t a s k s . . .
4

5 / / C r e a t e an e x e c u t o r wi th 4 t h r e a d s
6 t f : : E x e c u t o r e x e c u t o r {4} ;
7

8 / / Run t h e t a s k f l o w o b j e c t once
9 a u t o f u t = e x e c u t o r . run (t a s k f l o w) ;

10 f u t . g e t () ;
11

12 / / Run t h e t a s k f l o w o b j e c t 4 t i m e s wi th a c a l l b a c k
13 t a s k f l o w . run n (t a s k f l o w , 4 , [] () {
14 s t d : : c o u t << ” F i n i s h !\ n ” ;
15 }) . g e t () ;
16

17 / / Run t h e t a s k f l o w o b j e c t wi th a p r e d i c a t e
18 i n t c o u n t e r {4} ;
19 e x e c u t o r . run u n t i l (t a s k f l o w ,
20 [&] (){ r e t u r n −−c o u n t == 0 ; }
21) . g e t () ;

Listing 2. Different ways to execute a task dependency graph.

D. Task Dependency Graph Composition

Task dependency graph composition is the most important

feature in Cpp-Taskflow v2. It allows users to create heavily

optimized task dependency graphs and reuse them to compose

larger graphs and so on so forth. The tf::Taskflow class defines

a method composed of to enable composition. Specifically, the

caller taskflow object adds a module task of the callee task-

flow object. Listing 3 shows an example of taskflow object

composition. Line 1:10 creates a taskflow object with three

dependent tasks A1, A2, and A3. Line 12:19 creates another

taskflow object with three tasks B1, B2, and B3. Line 22

adds a module task from the first taskflow object and line

25:27 specifies the dependency between tasks. Unlike the

emplace method that creates a regular task, the composed of

method creates a module task in the graph. A module task

is a special task that is aware of which taskflow object to

probe during its execution context. We would like to highlight

three points of our composition interface. First, there is no

copy during the composition, leading to efficient graph sharing

and resource utilization. We have strived to resolve many

scheduling conflicts due to shared tasks, while providing a

high-level execution API to completely separate this low-level

controls from users. Second, recursive and nested composition

are feasible. A taskflow object can be used to compose

multiple taskflow objects and the resulting taskflow object can

compose another taskflow object with no restriction. During

the composition, user can add free-standing tasks to the graph

to perform computation across different task layers. Adding

dependency is extremely easy and flexible through the precede

method. Finally, the module task works seamlessly with both

static and dynamic tasking. This gives users a powerful and

unified tasking interface to accomplish large and complex

parallel workloads.

1 t f : : T a s k f l o w fA ;
2

3 / / Add t h r e e t a s k s
4 a u t o [A1 , A2 , A3] = fA . emplace (
5 [] () { s t d : : c o u t << ” Task A1\n ” ; } ,
6 [] () { s t d : : c o u t << ” Task A2\n ” ; } ,
7 [] () { s t d : : c o u t << ” Task A3\n ” ; }
8) ;
9

10 A3 . g a t h e r (A1 , A2) ;
11

12 t f : : T a s k f l o w fB ;
13

14 / / Add t h r e e t a s k s
15 a u t o [B1 , B2 , B3] = fB . emplace (
16 [] () { s t d : : c o u t << ” Task B1\n ” ; } ,
17 [] () { s t d : : c o u t << ” Task B2\n ” ; } ,
18 [] () { s t d : : c o u t << ” Task B3\n ” ; }
19) ;
20

21 / / Compose t a s k f l o w o b j e c t
22 a u t o moduleA = fB . composed of (fA) ;
23

24 / / B u i l d dependency between module and r e g u l a r t a s k s
25 B1 . p r e c e d e (moduleA) ;
26 B2 . p r e c e d e (moduleA) ;
27 moduleA . p r e c e d e (B3) ;

Listing 3. Cpp-Taskflow v2 taskflow object composition code (19 LOC and
167 tokens).

At this point, we are interested in the difference between

our composition code and existing libraries. Listing 4 is the

implementations of Listing 3 using TBB flow graph [7]. As

shown in the two listings, Cpp-Taskflow v2 has the least lines

of code and is more readable compared with TBB code. To

our best knowledge, TBB has no API to directly compose

task graphs, so we have to capture the task graph into another

task and execute the task graph. This results in longer lines of

code and tends to produce bugs if one forgets to execute the

task graph. This example clearly shows the conciseness and

ease-of-use of the task composition interface in Cpp-Taskflow

v2.

1 u s i n g name s p a c e t b b ;
2 u s i n g name s p a c e t b b : : f low ;
3

4 graph fA ;
5

6 con t inue node<con t inue m sg> A1(fA , []
7 (c o n s t con t inue m sg &) {
8 s t d : : c o u t << ” Task A1\n” ;
9 }

10) ;
11 con t inue node<con t inue m sg> A2(fA , []
12 (c o n s t con t inue m sg &) {
13 s t d : : c o u t << ” Task A2\n” ;

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

14 }
15) ;
16 con t inue node<con t inue m sg> A3(fA , []
17 (c o n s t con t inue m sg &) {
18 s t d : : c o u t << ” Task A3\n ” ;
19 }
20) ;
21

22 make edge (A1 , A3) ;
23 make edge (A2 , A3) ;
24

25 graph fB ;
26

27 con t inue node<con t inue m sg> B1 (fB , []
28 (c o n s t con t inue m sg &) {
29 s t d : : c o u t << ” Task B1\n ” ;
30 }
31) ;
32 con t inue node<con t inue m sg> B2 (fB , []
33 (c o n s t con t inue m sg &) {
34 s t d : : c o u t << ” Task B2\n ” ;
35 }
36) ;
37 con t inue node<con t inue m sg> B3 (fB , []
38 (c o n s t con t inue m sg &) {
39 s t d : : c o u t << ” Task B3\n ” ;
40 }
41) ;
42 con t inue node<con t inue m sg> moduleA (fB , [&]
43 (c o n s t con t inue m sg &) {
44 A1 . t r y p u t (con t inue m sg ()) ;
45 A2 . t r y p u t (con t inue m sg ()) ;
46 fA . w a i t f o r a l l () ;
47 }
48) ;
49

50 make edge (B1 , moduleA) ;
51 make edge (B2 , moduleA) ;
52 make edge (moduleA , B3) ;

Listing 4. TBB hard-coded composition code (48 LOC and 256 tokens).

In addition to the composability, another useful feature is

the modularity. Through inheritance from tf::Taskflow class,

users can define their own task dependency graph class as

a single module. The task dependency graph composition and

execution APIs can be directly applied to the customized class

as well, obviating the need of an additional wrapper.

With the composability and modularity, a complex design

can be decomposed into small components with different

parallel patterns. Users can implement and test those patterns

individually and combine them in various ways such as nested

or concatenation to deliver complex functionality. This can

substantially increase programmers’ productivity as it enables

a structural and efficient way for software engineering.

E. Unified Task Execution

Cpp-Taskflow v2 modifies the execution kernel to enable

seamless integration of the reusable and composable task

dependency graph with existing task types. To make a task

dependency graph reusable, it’s necessary to ensure the graph

remains unchanged after each execution. During runtime, a

task might expand the graph by spawning new nodes to pre-

cede the parent node such as dynamic tasking. As a result, in

Cpp-Taskflow v2 a task that spawns new tasks will restore its

own precedence before scheduling its successor tasks. Letting

each task perform the restoration on itself also minimizes the

overhead.

Apart from the regular tasks, a task dependency graph

can have module tasks through composing other graphs. The

execution flow of module task is similar to dynamic tasking

except that a module task directly dispatches the composed

graph rather than a subflow. A module task will be executed

twice:

• First time:

– The executor first collects the source and sink tasks in

the composed graph and let the sink tasks precede the

module task.

– The executor dispatches the source tasks to execution.

• Second time:

– The executor clears the successor of sink tasks in com-

posed graph.

– The executor dispatches the module task’s successors to

execution.

Figure 2 is an example that illustrates scheduling a module

task.

Fig. 2. An example to illustrate the execution of module task.

F. Visualize a task dependency graph with both regular and

module tasks.

Cpp-Taskflow v2 provides the same APIs as Cpp-Taskflow

to support visualization of task dependency graph to facilitate

debugging. A taskflow object can be assigned a name by

the name method and it has a dump method to export its task

dependency graph in DOT language [8]. A module task is

represented by a cuboid to differentiate from the regular tasks.

Figure 3 shows an example of visualizing composed task

dependency graphs.

III. EVALUATION

We conduct experiments to emulate two real-world applica-

tions, a parallel machine learning hyperparameter search and

a Very-large-scale integration (VLSI) circuit timing analysis.

We focus on comparison with TBB as both Cpp-Taskflow

v2 and TBB adopt task dependency graph for programming

model. We demonstrate Cpp-Taskflow v2 achieves comparable

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Fig. 3. Visualize the task dependency graph D with its regular and module
tasks. Note the arrows between taskflow objects are added deliberately here
for clarity.

performance with less software development effort using the

task graph composition.

The experiment platform has 128 GB memory and a 2.5

GHz Intel Xeon W-2175 processor with 14 physical cores and

28 threads. The operating system is Ubuntu 18.04.2. We use

the library provided APIs to control the number of threads and

the system utility taskset to pin each thread to a specific core to

minimize the migration overhead. All programs are compiled

using g++-7.4 with optimization flag O2 and C++ standard flag

−std=c++17. We use Intel TBB 2019 Update 2 (flow graph) as

the baseline for evaluation.

A. Machine Learning Application

Machine learning involves lots of computations and parallel

computing plays a key role in building machine learning

applications. Deep neural network (DNN) is a fundamental

machine learning model and a DNN typically has many param-

eters to tune such as learning rate, layer number, and weight

initialization [9]. Finding a good parameter set is an important

topic in machine learning study and many approaches have

been proposed [9] [10] [11] [12]. An intuitive way to explore

the parameter space is to concurrently train multiple DNNs

with different parameter sets. We emulate this process by

creating a parallel DNN training framework on the MNIST

dataset [13]. In this framework, we train multiple DNNs

concurrently and synchronize them every epoch and shuffle

the data for next epoch.

To implement the proposed framework with Cpp-Taskflow

v2, we first create a TrainingPattern class that performs a

training pass (forward/backward propagation) over a batch

of data. We use the task pipelining strategy proposed by [5]

in the TrainingPattern to enable parallelism. Then, we build a

TrainingEpoch class to iterate through all batches by composing

each TrainingPattern into a linearized task graph. Lastly, we

gather those TrainingPatterns with a data shuffle task into a

ParallelDNNTraining task graph. Figure 4 depicts the framework.

For TBB, we first use the flow graph interface to build the

TrainingPattern for each DNN. Then we create another flow

graph for ParallelDNNTraining. The ParallelDNNTraining flow graph

explicitly captures a TrainingPattern in a node and launches the

training during execution.

Fig. 4. Parallel DNN training through hierarchical composition.

We train ten DNNs concurrently with each DNN has five

layers (784x64x32x16x8x10). For simplicity, we adopt gradi-

ent descent optimization and set the learning rate of each DNN

to 0.0001. Table I is the code complexity analysis reported

by Lizard [14]. The lines of code (NLOC) of Cpp-Taskflow

v2’s implementation is 22% shorter than the TBB’s. There

are two reasons for this: first TBB uses template syntax for

task construction and second we need to explicitly dispatch

the composed graph to execution in TBB’s implementation.

TABLE I
CODE COMPLEXITY ANALYSIS OF THE PARALLEL DNN TRAINING

FRAMEWORK.

Library
NLOC
(total)

CCN
(avg)

Token
(avg)

Cpp-Taskflow v2 60 2.0 90.6

TBB 77 2.8 125.0

NLOC: lines of code. CCN: cyclomatic complexity number.

We use 10 cores in this experiment and train those DNNs

from 10 to 100 epochs. Figure 5 plots the two libraries’

runtime of the parallel DNN training. Both libraries exhibit

a similar trend in runtime growth when increasing the number

of epochs and Cpp-Taskflow v2 outperforms TBB in all cases.

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Number of epochs

R
u

n
ti

m
e

(s
)

TBB

Cpp-Taskflow v2

Fig. 5. Runtime of training 10 DNNs using 10 cores in parallel.

B. VLSI Timing Analysis

The second application is VLSI timing analysis. Timing

analysis is an important step in circuit design as a circuit

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

must meet the timing requirements before tape-out [15] [16].

Timing analysis contains different workloads such as timing

simulation and correlation, and each workload can be managed

either by a tool or a library. In order to run a complete

timing analysis, users have to integrate libraries into their

programs and write hard-coded scripts to compose those tools.

Obviously, hard-coded script is not flexible and is very difficult

to scale up to complex control flow. In this experiment, we

demonstrate using Cpp-Taskflow v2 to quickly compose those

tools together to emulate the timing analysis flow. The idea

is to encapsulate each tool in a task and those tasks use

process fork to execute the tools. Our method can shorten

the analysis runtime by letting tools run concurrently and can

also effectively handle the complex control flow.

Figure 6 depicts the timing analysis flow. In the process

framework, we launch multiple timers with each running the

timing analysis for a scenario2 and dumping the top 100

critical paths to disk. After timers finish, those paths are

read into memory by a reader task. A simulation framework

composes multiple process frameworks to parallelize the path

reading. To find the correlation between each pair of scenarios

using those critical paths, we create a scenario task to calculate

the correlation coefficients between a scenario and others.

Those scenario tasks are gathered into the scenario framework.

Lastly, we build a timing analysis framework by composing

the simulation framework and the scenario framework.

Fig. 6. A parallel VLSI timing analysis framework.

We create individual C++ struct for the first three frame-

works by inheriting tf::Taskflow and build the timing analysis

framework in a single function (top) using these frameworks.

We use OpenTimer [16], an open-source VLSI timing ana-

lyzer, to perform static timing analysis (STA). Table II shows

the code complexity of each implementation measured by

Lizard. The results show that Cpp-Taskflow v2 takes fewer

lines of code than TBB.

Next for performance profiling, we create 1024 design con-

straints with each representing a scenario. For each scenario

2In this experiment, a scenario denotes a different design constraint.

TABLE II
CODE COMPLEXITY ANALYSIS OF THE TIMING ANALYSIS FLOW. THE

FIRST TABLE IS THE WHOLE FILE AND THE SECOND TABLE IS FOR

INDIVIDUAL FRAMEWORK.

Library NLOC (total) CCN (avg) Token (avg)

Cpp-Taskflow v2 61 3.0 132

TBB 104 2.6 106.6

Framework
NLOC (total) CCN (avg) Token (avg)
TF TBB TF TBB TF TBB

Process 10 14 2 2 118 155

Simulation 5 9 2 2 47 63

Scenario 15 16 4 4 137 155

Top 23 29 4 4 226 283

NLOC: lines of code. CCN: cyclomatic complexity number.

we launch a timer to analyze the industrial circuit tv80 (5.3k

gates and 5.3k nets) [17] and group 8 timers in a process

framework. Figure 7 shows the results of scaling from 1 core to

14 cores. Both TBB’s and Cpp-Taskflow v2’s runtimes exhibit

the same scaling and are very close in all cases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

200

300

400

Number of cores

R
u

n
ti

m
e

(s
)

TBB

Cpp-Taskflow v2

Fig. 7. Runtime comparisons of the proposed VLSI timing analysis flow on
circuit tv80 using TBB and Cpp-Taskflow v2

IV. CONCLUSIONS

This paper presents Cpp-Taskflow v2, a parallel program-

ming library on composable task graph. Cpp-Taskflow v2

introduces a task graph composition interface to enable com-

posable parallel programming. Users can use the composition

interface to quickly build a large parallel program through

composing modular and reusable task graphs. The experimen-

tal results show that Cpp-Taskflow v2 can achieve comparable

performance to Intel Threading Building Blocks with fewer

lines of code. Future work will focus on extension to hetero-

geneous computing, especially under the mixed workload of

CPUs and GPUs.

V. ACKNOWLEDGEMENT

This work is supported by NSF Grant CCF-1718883 and

DARPA Grant FA 8650-18-2-7843.

REFERENCES

[1] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Cre-
spo, and Dan Dennison. Hidden technical debt in machine learning
systems. In NIPS, pages 2503–2511, 2015.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

[2] Eduard Ayguad and Daniel Jimnez-Gonzlez. An approach to task-based
parallel programming for undergraduate students. J. Parallel Distrib.
Comput., 118(P1):140–156, August 2018.

[3] Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier
Aguilar, Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier,
Stefano Markidis, Herbert Jordan, Thomas Fahringer, Kostas Katrinis,
Erwin Laure, and Dimitrios S. Nikolopoulos. A taxonomy of task-based
parallel programming technologies for high-performance computing. J.

Supercomput., 74(4):1422–1434, April 2018.
[4] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker,

Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf,
Holger Pirk, Saman Amarasinghe, Samuel Madden, and Matei Zaharia.
Evaluating end-to-end optimization for data analytics applications in
weld. VLDB, 11(9):1002–1015, 2018.

[5] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F.
Wong. Cpp-Taskflow: Fast Task-based Parallel Programming using
Modern C++. In IEEE IPDPS, pages 974–983, 2019.

[6] Cpp-Taskflow. https://github.com/cpp-taskflow/cpp-taskflow.
[7] Intel Threading Building Blocks. [online]. available:

https://www.threadingbuildingblocks.org/intel-tbb-tutorial.
[8] The DOT Language. https://www.graphviz.org/.
[9] Y. Bengio. Practical recommendations for gradient-based training of

deep architectures. In: Montavon G., Orr G.B., Muller KR. (eds) Neural
Networks: Tricks of the Trade, Lecture Notes in Computer Science, 7700,
2012.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, February 2012.

[11] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian
optimization of machine learning algorithms. In Proceedings of the 25th

International Conference on Neural Information Processing Systems -

Volume 2, NIPS’12, pages 2951–2959, USA, 2012.
[12] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical

guide to support vector classification. Technical report, Department of
Computer Science, National Taiwan University, 2010.

[13] MNIST. [online]. available: http://yann.lecun.com/exdb/mnist/.
[14] Lizard. [online]. available: http://www.lizard.ws/.
[15] Tsung-Wei Huang and Martin D. F. Wong. UI-Timer 1.0: An ul-

trafast path-based timing analysis algorithm for cppr. IEEE TCAD,
35(11):1862–1875, Nov 2016.

[16] Tsung-Wei Huang and Martin D. F. Wong. OpenTimer: A high-
performance timing analysis tool. In IEEE/ACM ICCAD, pages 895–902,
2015.

[17] J. Hu, G. Schaeffer, and V. Garg. Tau 2015 contest on incremental timing
analysis. In 2015 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 882–889, Nov 2015.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

