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Abstract—In this paper we introduce Cpp-Taskflow, a new
C++ tasking library to help developers quickly write parallel
programs using task dependency graphs. Cpp-Taskflow leverages
the power of modern C++ and task-based approaches to enable
efficient implementations of parallel decomposition strategies.
Our programming model can quickly handle not only traditional
loop-level parallelism, but also irregular patterns such as graph
algorithms, incremental flows, and dynamic data structures.
Compared with existing libraries, Cpp-Taskflow is more cost
efficient in performance scaling and software integration. We
have evaluated Cpp-Taskflow on both micro-benchmarks and
real-world applications with million-scale tasking. In a machine
learning example, Cpp-Taskflow achieved 1.5–2.7× less coding
complexity and 14–38% speed-up over two industrial-strength
libraries OpenMP Tasking and Intel Threading Building Blocks
(TBB).

I. INTRODUCTION

This paper addresses a long-standing problem, “how can

we make it easier for C++ developers to write efficient par-

allel programs under complex task dependencies?” Through

the evolution of parallel programming standards, task-based

model has been proven to pave the path to scale up with future

processor generations and architectures [1]. The traditional

loop-based parallelism is not sufficient for exploiting the

scalability of complex software and parallel algorithms that

require irregular compute patterns such as graph traversal

and dynamic flows [2]. For many C++ developers, writing

a correct and efficient task parallel program is challenging,

not only because of the capability of a tasking library but

also its productivity to express a task dependency graph.

The library programmability can affect a C++ developer from

subtle implementation details to algorithm-level decisions of

parallel decomposition strategies [3]. However, related re-

search remains nascent, particularly on the front of using

modern C++ to enhance the functionality and performance

that were previously not possible.

Consequently, we introduce Cpp-Taskflow, a new C++ task-

ing library to help developers quickly write parallel programs

using task dependency graphs [4]. Cpp-Taskflow is written in

C++17, allowing users to use powerful modern C++ features

and standard libraries together with our parallelization frame-

work to write fast and scalable parallel programs. We have

designed a simple and expressive graph description language

that empowers developers with both static and dynamic graph

constructions and refinements to fully exploit task parallelism.

Listing 1 demonstrates an example Cpp-Taskflow program.

The code explains itself. The program creates a task depen-

dency graph of four tasks, A, B, C, and D. The dependency

constraints state that task A runs before task B and task C,

and task D runs after task B and task C. There is no explicit

thread managements nor complex lock controls in the code.

t f : : Taskf low t f ;

a u t o [A, B , C , D] = t f . emplace (
[ ] ( ) { s t d : : c o u t << ” Task A\n” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task B\n” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task C\n” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task D\n” ; }

) ;

A . p r e c e d e (B , C ) ; / / A r u n s b e f o r e B and C
B . p r e c e d e (D ) ; / / B r u n s b e f o r e D
C . p r e c e d e (D ) ; / / C r u n s b e f o r e D

t f . w a i t f o r a l l ( ) ; / / b l o c k u n t i l f i n i s h

Listing 1: A simple task dependency graph in Cpp-Taskflow.

The design principle of Cpp-Taskflow is to let users write

simple and efficient parallel code. What we advocate here is

expressive, readable, and transparent code that scales to large

number of cores. Cpp-Taskflow explores a minimum set of

core routines that are sufficient enough for users to implement

a broad set of parallel decomposition strategies such as parallel

loops, graph algorithms, and dynamic flows. We leverage the

power of modern C++ to strike a balance between performance

and usability of our application programming interface (API).

Our API is not only flexible on the user front but is also

extensible with the evolution of future C++. We summarize

our contributions as follows:

• Programming model. We developed a simple parallel task

programming model that enables efficient implementations

of parallel algorithms. Our user experiences lead us to

believe that while it requires some effort to learn, a C++

programmer can master our APIs and apply Cpp-Taskflow

to his/her jobs in just a few minutes.

• Transparency. Cpp-Taskflow is transparent. Users need

no understanding of standard concurrency controls such

as thread managements and lock mechanisms, which are

difficult to program correctly. Instead, we offer a lightweight

abstraction for users to focus on high-level developments

and leave system details to Cpp-Taskflow.

• Unified interface. We developed a unified programming

interface for both static and dynamic tasking. The same
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API used for static tasking all applies to dynamic tasking.

Programmers need not to learn a different API set.

We have evaluated Cpp-Taskflow on both micro-

benchmarks and real-world applications. The performance

scales from a single processor to multiple cores with millions

of tasks. We believe Cpp-Taskflow stands out as a unique

tasking library considering the ensemble of software tradeoffs

and architecture decisions we have made. Cpp-Taskflow

is open-source and is being used by many industrial and

academic research projects [4].

II. PROJECT MOTIVATION

Cpp-Taskflow is motivated by our research project on devel-

oping a high-performance timing analysis tool for very large

scale integration (VLSI) systems. Timing analysis is a very

important component in the overall design flow [5]. It verifies

the expected timing behaviors of a digital circuit to ensure

correct functionalities after tape-out. During the chip design

flow, the timing analyzer is used as an inner loop of an op-

timization algorithm to iteratively and incrementally improve

the timing of a circuit layout. Optimization engine typically

applies millions of design transforms to modify the design

both locally and globally, and the timer has to quickly update

the timing information to guarantee slack integrity. However,

today’s circuit is very large and is made up of billions of

transistors. Figure 1 shows an example analysis benchmark

from IBM chip designs. Timing this circuit can take several

hours or days when sign-off is taken into count. Computing

an analysis loop requires fairly expensive computations and

must take advantage of multicore to speed up the runtime.

Fig. 1: An industrial IBM circuit design benchmark [6].

A. Challenge 1: Large and Complex Task Dependencies

The biggest challenge to write a parallel timing analyzer is

the large and complex task dependencies. In order to construct

a timing graph, we need to collect a number of information

such as load capacitance, slew, delay, and arrival time. How-

ever, these quantities are dependent of each other and are

expensive to compute. The resulting task dependency in terms

of encapsulated function calls is very complex. For example, in

a million-gate circuit design, the graph can encounter billions

of tasks and dependencies. In fact, many workloads in the

VLSI domain are more connected and complex than that of

social media and scientific computing [6].

B. Challenge 2: Irregular Compute Pattern

Updating a timing graph involves extremely irregular mem-

ory patterns and significant diverse behavior across different

computations. The task programming model must be flexible

for both regular and irregular blocks, whether the data is

structured in local blocks or is flat in the global scope. We

must be able to capture different data representations inside a

task, for carrying out different timing propagation algorithms

and pruning heuristics.

C. Challenge 3: Dynamic Flow

Optimization or physical synthesis programs often call an

incremental timer millions of times in their inner loop. For

large designs, the process can take several hours or days

to finish. To mitigate the long runtime, the timing analyzer

needs to incrementally answer timing queries after one or

more changes to the circuit were made. The process is highly

iterative and unpredictable, and consists of many dynamic and

conditional workloads that cannot be foreseen in static graph

constructions.

D. State-of-the-Art Solutions and their Bottleneck

Almost all existing timing analyzers were written in C++

and focus on loop-level parallelization [6], [7]. The most

common approach, including industrial implementations, is

to levelize the circuit graph into a topological order, and

apply language-specific “parallel_for” level by level.

Two mainstream library choices are OpenMP task depen-

dency clause and Intel Threading Building Blocks (TBB)

FlowGraph [8], [9]. However, there are many limitations in

using these libraries. For example, OpenMP relies on static

task annotations with a valid order in line with a sequential

execution, making it very difficult to handle dynamic flows

where the graph structure is unknown at programming time.

TBB is disadvantageous mostly from an ease-of-programming

standpoint. Its task graph description language is very complex

and often results in large source lines of code (LOC) that are

hard to read and debug. These issues combined to make it

difficult to go beyond the loop-based approach, disallowing

computations to flow naturally with the timing graph. After

many years of research, we and our industry partners conclude

the biggest hurdle to a scalable parallel timing analyzer is a

suitable task programming library. Inspired by our problem

domains, we are interested in the workload of million- to

billion-scale tasks with runtime in the order of seconds to

minutes. We focus on C++ on a shared memory architecture.

III. CPP-TASKFLOW

While Cpp-Taskflow was initiated to support our VLSI

projects, we decided to disclose its knowledge and make it

a general tasking library for writing parallel applications [4].

Cpp-Taskflow aims to help C++ developers quickly

write parallel programs and implement efficient

parallel decomposition strategies using the task-based

approach.

— Cpp-Taskflow’s Project Mantra
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A. Create a Task

Cpp-Taskflow is object-oriented. A task in Cpp-Taskflow

is defined as a callable object for which the operation

std::invoke is applicable. Listing 2 demonstrates the

creation of a task in Cpp-Taskflow. The first entry to a Cpp-

Taskflow program is declaring a taskflow object from the class

tf::Taskflow. A taskflow object is where to create task

dependency graphs and dispatch them to threads for execution.

The method emplace creates a task from a given callable

object. Users can also create multiple tasks at one time.

t f : : Taskf low t f ;

/ / c r e a t e a t a s k wi th a c l o s u r e
a u t o A = t f . emplace (

[ ] ( ) { s t d : : c o u t << ” Task A\n ” ; }
) ;

/ / c r e a t e m u l t i p l e t a s k s a t one t ime
a u t o [X, Y, Z ] = t f . emplace (

[ ] ( ) { s t d : : c o u t << ” Task X\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task Y\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task Z\n ” ; }

) ;

Listing 2: Create a task in a taskflow object.

Each time users create a task, the taskflow object adds a

node to the present graph and returns a task handle. A task

handle is a lightweight class objects that wraps up a particular

node in a graph. Adding this layer of abstraction provides

an extensible mechanism to modify the task attributes and

prevents users from direct access to the internal graph stor-

age. Each node has a general-purpose polymorphic function

wrapper to store and invoke any callable target (task) given

by users. Hereafter, we use “task A” to represent the task

stored in node A. A task handle can be empty, often used as

a placeholder when it is not associated with a node. This is

particularly useful when the callable target cannot be decided

until some points at the program, while we need to pre-allocate

a storage for the task in advance.

B. Static Tasking

After tasks are created, the next step is to add dependencies.

A task dependency is a directed edge from one task A to

another task B such that task A runs before task B. To be more

specific, node B will not invoke its task until node A finishes

its task. Cpp-Taskflow defines a very intuitive method called

precede for users to create a task dependency between a

pair of tasks. The most basic graph concept in Cpp-Taskflow

is static tasking. Static tasking captures the static parallel

structure of a decomposition strategy and is defined only by

the program itself. It has a flat task hierarchy and cannot spawn

new tasks from a running dependency graph.

t f : : T askf low t f ;
a u t o [ a0 , a1 , a2 , a3 , b0 , b1 , b2 ] = t f . emplace (

[ ] ( ) { s t d : : c o u t << ” a0\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” a1\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” a2\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” a3\n ” ; } ,

a0 a1 a2

b2b0 b1

a3

Fig. 2: A static task dependency graph of seven tasks and eight
dependency constraints.

[ ] ( ) { s t d : : c o u t << ” b0\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” b1\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ” b2\n ” ; } ,

) ;
a0 . p r e c e d e ( a1 ) ;
a1 . p r e c e d e ( a2 , b2 ) ;
a2 . p r e c e d e ( a3 ) ;
b0 . p r e c e d e ( b1 ) ;
b1 . p r e c e d e ( a2 , b2 ) ;
b2 . p r e c e d e ( a3 ) ;

t f . w a i t f o r a l l ( ) ;

Listing 3: Cpp-Taskflow code of Figure 2 (17 LOC and 178

tokens).

Figure 2 shows an example of static task dependency graph

and Listing 3 demonstrates its implementation with Cpp-

Taskflow. These task dependencies are described intuitively

using the method precede from individual task handles.

We implemented precede using C++ function parameter

pack, allowing users to write multiple dependencies at one

time. Listings 4 and 5 demonstrated the counterparts written in

OpenMP task dependency clause and TBB FlowGraph. While

analyzing programmability is a very complex procedure, we

believe in this example Cpp-Taskflow is more concise and

effective than the others. In terms of LOC, the task dependency

graph takes only 17 lines of Cpp-Taskflow code but 22

and 37 lines for OpenMP and TBB, respectively. Compared

with OpenMP, programmers need to explicitly specify the

dependency clause on both sides of a constraint. Also, it is

users’ responsibility to identify a correct topological order to

describe each task such that it is consistent with the sequential

program flow. For example, the #pragma task block for

a1 cannot go above a0. Otherwise, the program can produce

unexpected results when switching to a different compiler

vendor or integrating with other projects where OpenMP needs

disabled. On the other hand, the TBB-based implementation is

quite verbose. Programmers need to understand the complex

template class continue_node and the role of the message

class before getting started with a simple task dependency

graph. To run a flow graph, users need to explicitly tell TBB

the source tasks and call the method try_put to either enable

a nominal message or an actual data input. All these add up

to extra programming effort.

#pragma omp p a r a l l e l
{
#pragma omp s i n g l e
{

i n t a0 a1 , a1 a2 , a1 b2 , a2 a3 ;
i n t b0 b1 , b1 b2 , b1 a2 , b2 a3 ;
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#pragma omp t a s k depend ( o u t : a0 a1 )
s t d : : c o u t << ” a0\n ” ;

#pragma omp t a s k depend ( o u t : b0 b1 )
s t d : : c o u t << ” b0\n ” ;

#pragma omp t a s k depend ( i n : a0 a1 ) depend ( o u t :
a1 a2 , a1 b2 )

s t d : : c o u t << ” a1\n ” ;

#pragma omp t a s k depend ( i n : b0 b1 ) depend ( o u t :
b1 b2 , b1 a2 )

s t d : : c o u t << ” b1\n ” ;

#pragma omp t a s k depend ( i n : a1 a2 , b1 a2 ) depend (
o u t : a2 a3 )

s t d : : c o u t << ” a2\n ” ;

#pragma omp t a s k depend ( i n : a1 b2 , b1 b2 ) depend (
o u t : b2 a3 )

s t d : : c o u t << ” b2\n ” ;

#pragma omp t a s k depend ( i n : a2 a3 , b2 a3 )
s t d : : c o u t << ” a3\n ” ;

}
}

Listing 4: OpenMP code of Figure 2 (22 LOC and 181 tokens).

u s i n g namespace t b b ;
u s i n g namespace t b b : : f low ;

i n t n = t a s k s c h e d u l e r i n i t : : d e f a u l t n u m t h r e a d s ( ) ;
t a s k s c h e d u l e r i n i t i n i t ( n ) ;

g raph g ;
con t inue node<con t inue msg> a0 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” a0\n ” ;

} ) ;
con t inue node<con t inue msg> a1 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” a1\n ” ;

} ) ;
con t inue node<con t inue msg> a2 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” a2\n ” ;

} ) ;
con t inue node<con t inue msg> a3 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” a3\n ” ;

} ) ;
con t inue node<con t inue msg> b0 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” b0\n ” ;

} ) ;
con t inue node<con t inue msg> b1 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” b1\n ” ;

} ) ;
con t inue node<con t inue msg> b2 ( g , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ” b2\n ” ;

} ) ;

make edge ( a0 , a1 ) ;
make edge ( a1 , a2 ) ;
make edge ( a1 , b2 ) ;
make edge ( a2 , a3 ) ;
make edge ( b0 , b1 ) ;
make edge ( b1 , b2 ) ;
make edge ( b1 , a2 ) ;
make edge ( b2 , a3 ) ;

a0 . t r y p u t ( con t inue msg ( ) ) ;
b0 . t r y p u t ( con t inue msg ( ) ) ;

g . w a i t f o r a l l ( ) ;

Listing 5: TBB code of Figure 2 (37 LOC and 295 tokens).

C. Dispatch a Task Dependency Graph

Each taskflow object has exactly one graph at a time that

represents a task dependency graph constructed so far. Once a

task dependency graph is decided, the next step is to dispatch

it to threads for execution. The graph exists and remains in

control until users dispatch it for execution. Figure 3 illustrates

the program flow of dispatching a task dependency graph.

In Cpp-Taskflow, we call a dispatched graph a topology. A

topology is a data structure that wraps up a dispatched graph

and stores a few metadata obtained at runtime. Each taskflow

object has a list of topologies to keep track of the execution

status of dispatched graphs. The communication is based on

a pair of C++ shared_future and promise. Users can

retrieve this information later on for graph inspection and

debugging. All tasks are executed in a shared thread storage

coupled with an executor to decide which thread runs which

task.

Fig. 3: Program flow of dispatching task dependency graphs.

Cpp-Taskflow provides two ways to dispatch a task depen-

dency graph, blocking and non-blocking executions. Listing 6

demonstrates the usage of these two methods. The first method

wait_for_all is blocking. It dispatches the present graph

to threads and blocks until all tasks finish. On the contrary,

the second method dispatch is non-blocking. It dispatches

the present graph to threads and returns immediately to the

program without waiting for all tasks to finish. This allows pro-

grammers to perform other computations to overlap the graph

execution. Users can acquire a std::shared_future ob-

ject returned from dispatch to access the execution status

of the graph or call get to block on completion. Cpp-Taskflow

provides also a method silent_dispatch for users to

ignore the execution status.

t f : : Taskf low t f ;

a u t o [A, B] = t f . emplace (
[ ] ( ) { s t d : : c o u t << ” Task A\n” ; } ) ,
[ ] ( ) { s t d : : c o u t << ” Task B\n” ; } )

} ) ;
A . p r e c e d e (B ) ; / / t a s k A r u n s b e f o r e t a s k B
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t f . w a i t f o r a l l ( ) ; / / b l o c k u n t i l f i n i s h

s t d : : t i e (A, B) = t f . emplace (
[ ] ( ) { s t d : : c o u t << ”New Task A\n ” ; } ) ,
[ ] ( ) { s t d : : c o u t << ”New Task B\n ” ; } )

) ;
B . p r e c e d e (A ) ; / / t a s k B r u n s b e f o r e t a s k A

a u t o s h a r e d f u t u r e = t f . d i s p a t c h ( ) ;
/ / do someth ing t o o v e r l a p t h e graph e x e c u t i o n
/ / . . .
s h a r e d f u t u r e . g e t ( ) ; / / b l o c k u n t i l f i n i s h

Listing 6: Dispatch task dependency graphs for execution.

D. Dynamic Tasking

Another powerful feature of Cpp-Taskflow is dynamic task-

ing. Dynamic tasking refers to the creation of a task depen-

dency graph at runtime or, more specifically, in the execution

context of a task. Dynamic tasks are created from a running

dispatched graph. These tasks are spawned from a parent task

and are grouped together to form a task dependency graph

called subflow. We believe the biggest difference and advan-

tage that stand Cpp-Taskflow out of existing tasking frame-

works is our unified interface for static tasking and dynamic

tasking. We applied std::variant to our polymorphic

function wrapper and exposed the same task building blocks

to users for both static and dynamic graph constructions. The

same methods defined for static tasking are all applicable for

dynamic tasking. Programmers do not need to learn a different

API set to create dynamic workloads.

Dynamic Tasking (B spawns B1, B2, and B3)

A

B

C

D

B3

B2

B1

Fig. 4: A dynamic task dependency graph of four static tasks (A, B,
C, and D) and three dynamic tasks (B1, B2, and B3).

Listing 7 demonstrates Cpp-Taskflow’s implementation on

a dynamic task dependency graph in Figure 4. The task

dependency graph has four static tasks, A, C, D, and B.

The precedence constraints force task A to run before tasks

B and C, and task D to run after tasks B and C. During

the execution of task B, it spawns another task dependency

graph of three tasks B1, B2, and B3 (marked as cyan),

where task B1 and task B2 run before task B3. In Cpp-

Taskflow, tasks B1, B2, and B3 are grouped to a subflow

parented at task B. We allow users to describe this dynamic

dependencies using the same method emplace, with one

additional argument of type tf::SubflowBuilder that

will be created by the taskflow object at runtime passing to

task B. A subflow builder is a lightweight object that inherits

all graph building blocks from static tasking. By default, a

spawned subflow joins its parent task. This forces a subflow

to follow the subsequent dependency constraints of its parent

task. Depending on applications, users can detach a subflow

from its parent task using the method detach, allowing

its execution to flow independently. A detached subflow will

eventually join the end of the topology of its parent task.

Listings 7 and 8 compare two implementations of Figure 4

using Cpp-Taskflow and TBB. In a rough view, Cpp-Taskflow

has the least amount of code (20 vs 38). Our user feedbacks

lead us to believe that our dynamic tasking ends up being

cleaner and more expressive [4]. The subflow spawned from a

task belongs to the same graph of its parent task. Users do not

need to create a separate graph object to spawn dynamic tasks

as in TBB. While it is arguable which paradigm is better, we

have found it simpler and safer to stick with the same graph,

especially from the debugging aspect or when a subflow goes

nested or recursive.

t f : : T askf low t f ;

a u t o [A, C , D] = t f . emplace (
[ ] ( ) { s t d : : c o u t << ”A\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ”C\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ”D\n ” ; }

) ;
a u t o B = t f . emplace ( [ ] ( a u t o& subf low ) {

s t d : : c o u t << ”B\n ” ;
a u t o [ B1 , B2 , B3 ] = subf low . emplace (

[ ] ( ) { s t d : : c o u t << ”B1\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ”B2\n ” ; } ,
[ ] ( ) { s t d : : c o u t << ”B3\n ” ; }

) ;
B1 . p r e c e d e ( B3 ) ;
B2 . p r e c e d e ( B3 ) ;

} ) ;
A. p r e c e d e (B , C) ;
B . p r e c e d e (D) ;
C . p r e c e d e (D) ;

t f . w a i t f o r a l l ( ) ;

Listing 7: Cpp-Taskflow code of Figure 4 (20 LOC and 190

tokens).

u s i n g namespace t b b ;
u s i n g namespace t b b : : f low ;

i n t n = t a s k s c h e d u l e r i n i t : : d e f a u l t n u m t h r e a d s ( ) ;
t a s k s c h e d u l e r i n i t i n i t ( n ) ;

g raph G; / / c r e a t e an o u t e r g raph

con t inue node<con t inue msg> A(G, [ ] ( c o n s t
con t inue msg &) {

s t d : : c o u t << ”A\n ” ;
} ) ;
con t inue node<con t inue msg> C(G, [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ”C\n ” ;

} ) ;
con t inue node<con t inue msg> D(G, [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ”D\n ” ;

} ) ;
con t inue node<con t inue msg> B(G, [ ] ( c o n s t

con t inue msg &) {
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s t d : : c o u t << ”B\n ” ;
g raph subgraph ; / / c r e a t e a n o t h e r i n n e r g raph
con t inue node<con t inue msg> B1 ( subgraph , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ”B1\n ” ;

} ) ;
con t inue node<con t inue msg> B2 ( subgraph , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ”B2\n ” ;

} ) ;
con t inue node<con t inue msg> B3 ( subgraph , [ ] ( c o n s t

con t inue msg &) {
s t d : : c o u t << ”B3\n ” ;

} ) ;
make edge ( B1 , B3 ) ;
make edge ( B2 , B3 ) ;

B1 . t r y p u t ( con t inue msg ( ) ) ;
B2 . t r y p u t ( con t inue msg ( ) ) ;
subgraph . w a i t f o r a l l ( ) ;

} ) ;
make edge (A, B) ;
make edge (A, C) ;
make edge (B , D) ;
make edge (C , D) ;

A . t r y p u t ( con t inue m sg ( ) ) ; / / e x p l i c i t s o u r c e A
G. w a i t f o r a l l ( ) ;

Listing 8: TBB code of Figure 4 (38 LOC and 299 tokens).

E. Executor

Each taskflow object has an executor to schedule in which

list of tasks to execute per thread. While detailing the scheduler

is out of the scope of this paper, we briefly highlight our al-

gorithm. The default task scheduler performs a mixed strategy

of work stealing and work sharing, as presented in Algorithm

1. In addition to a typical work stealing loop, we introduced

two heuristics. First, we keeps each worker thread an exclusive

task cache to reduce the access times to its task queue. Per-

thread local cache enables speculative execution and ensures

no context switch for tasks with linear tasks dependency (line

16:25). Second, we maintain a list of idlers for those worker

threads preempted (line 8). This allows us to precisely wake

up a spare worker to run tasks or balance the load through

stealing (line 26:28).

Cpp-Taskflow’s executor interface is pluggable and share-

able. Users can customize their own scheduler for specific

problems or proprietary platforms. Sharing an executor among

multiple taskflow objects facilitates modular developments in

large Cpp-Taskflow applications, while avoiding the problem

of thread over-subscription. We use std::shared_ptr to

manage the ownership of an executor. A real case from our

users employs this functionality to design an efficient anima-

tion program, where a main taskflow object handles renders

and others tackle the dependency of resource loading [4].

F. Algorithm and Application Encapsulations

One of the key benefits of task-based programming is

the encapsulation of an algorithm or an application into

a task pattern. Cpp-Taskflow facilitates the realization of

this concept to promote rapid developments of large parallel

programs through smaller and structurally correct patterns.

Algorithm 1: WorkStealingScheduler

1 while stop �= true do
2 if auto t ← worker.queue.pop(); t == nullopt then
3 t← steal(worker.last victim);
4 end
5 if t == nullopt then
6 unique lock.lock();
7 if all queues are empty then
8 insert idler(worker);
9 while worker.idler == true do

10 worker.cv.wait(unique lock);
11 end
12 end
13 unique lock.unlock();
14 std::swap(t, worker.cache);
15 end
16 while t �= nullopt do
17 std::invoke(t.value());
18 if worker.cache then
19 t← std::move(worker.cache);
20 worker.cache ← nullopt;
21 end
22 else
23 t← nullopt;
24 end
25 end
26 if p ← random(); p == a given probability then
27 awaken one idler for load balancing();
28 end
29 end

Cpp-Taskflow has a built-in algorithm collections that imple-

mented common parallel workloads such as parallel_for,

reduce, and transform. Our implementations follow the

conventions of the C++ standard libraries. Users can easily

write generic code through powerful template instantiation and

splice it to their task dependency graphs to compose larger

application modules. An on-going project is building a set of

machine learning patterns on top of Cpp-Taskflow.

G. Debugging a Task Dependency Graph

Debugging a parallel program can be extremely difficult

due to subtly buggy implementations of a task dependency

graph. One of the biggest advantages of Cpp-Taskflow is the

built-in support for dumping a task dependency graph to a

standard DOT format. Developers can use readily available

tools such python GraphViz and Viz.js to visualize the graphs

without extra programming effort. This largely facilitates the

ease of debugging and speeds up the learning curve of task-

based programming. Figure 5 shows a visualization of a nested

subflow graph.

IV. EXPERIMENTAL RESULTS

We discuss the experimental results on two fronts, micro-

benchmarks and real-world applications. Micro-benchmarks

measure the pure tasking performance of each library on

processing two graph structures that represent regular and

irregular compute patterns. Next we move to two real-world
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Fig. 5: Visualization of a nested sublfow using the dump method.

applications, a large-scale VLSI timing analyzer and a paral-

lel machine learning workload. We will show Cpp-Taskflow

largely simplifies the developments of realistic use-cases and

boosts the performance that was not possible in existing

approaches. All experiments ran on a CentOS Linux 7.6.1810

machine with 256 GB RAM and 64 AMD Opteron Processors

at 2.1 GHz. We lock each thread to one CPU by using both (1)

library-specific API to restrict the number of spawned threads

and (2) OS-level utilities (taskset) to affine the running

process to the same number of CPUs. We compiled all pro-

grams using g++-8.2.0 with optimization flag O2 and C++17

standards -std=c++17 enabled. Due to the page limit, we

considered two industrial-strength libraries OpenMP 4.5 (task

dependency clause) and Intel TBB 2019 U3 (FlowGraph) as

our baseline to execute task dependency graphs [8], [9]. The

compiler provides the OpenMP support through the gcc tool

chain.

A. Micro-benchmark

We consider two classic workloads, wavefront computing

and graph traversal. We modified the wavefront computing

pattern from the official TBB blog [10]. As shown in Figure

6, a 2D matrix is partitioned into a set of identical square

blocks. Each block is mapped to a task that performs a

nominal operation with constant time complexity. The wave-

front propagates task dependencies monotonically from the

top-left block to the bottom-right block. Each task precedes

one task to the right and another below. In Figure 6, blocks

(tasks) with the same color can run concurrently. The resulting

task dependency graph exhibits a regular structure along with

the matrix partition. On the other hand, the graph traversal

benchmark reads in a randomly generated graph and casts it

to a task dependency graph that performs a parallel traversal.

Due to the static property of OpenMP task dependency clause,

we need to write an exhaustive list to cover all combinations

of input and output degrees. To avoid blowing up the OpenMP

code, we limit each node to have at most four input and output

edges. This experiment mimics the existing OpenMP-based

circuit analysis methods and their limitations [7]. The resulting

task dependency graph represents an irregular compute pattern.

We begin by examining the software costs using the popular

tools SLOCCount and Lizard [11], [12]. Compared with

OpenMP and TBB, Cpp-Taskflow achieves the least amount

of development efforts in terms of LOC and cyclomatic

complexity (see Table I). Our margin to a sequential baseline

Fig. 6: A 2D wavefront example and its task dependency graph.

TABLE I: Software Costs Comparison on Micro-benchmarks

Software

Costs

Cpp-Taskflow OpenMP TBB Sequential

LOC CC LOC CC LOC CC LOC CC

Wavefront 30 7 64 12 38 8 14 3

Graph Traversal 40 6 213 28 59 8 14 3

CC: cyclomatic complexity of the implementation

is also the smallest. Figure 7 shows the overall performance

of each library. Our measure includes library ramp-up time,

construction and execution of the task dependency graph, and

clean-up time. The top two plots show the runtime growth

with increasing problem size under 8 CPUs. In general, Cpp-

Taskflow scales up best. The performance margin to OpenMP

and TBB becomes larger as the problem size increases. For

instance, Cpp-Taskflow is 7.9× and 1.9× faster than OpenMP

and TBB in graph traversal at size 348K. Next, we compare

the performance between Cpp-Taskflow and TBB on different

number of CPUs at the largest problem size (262144 tasks

in wavefront and 711002 tasks in graph traversal). We skip

the comparison with OpenMP as it is slower than both TBB

and Cpp-Taskflow. As shown in the bottom two plots, Cpp-

Taskflow is consistently faster than TBB regardless of CPU

numbers. There are two important observations. First, Cpp-

Taskflow is about 32-84% faster than TBB at one CPU. This

reveals the overhead of TBB’s internal data structure to carry

out its flow graph model. Second, both libraries start to saturate

at about 8 CPUs in graph traversal. On the wavefront graph,

Cpp-Taskflow scales up to 9 CPUs whereas TBB stops at 4

CPUs. While this number is application-dependent, we can see

Cpp-Taskflow outperforms TBB in task scheduling.

B. VLSI Timing Analysis

We demonstrate the performance of Cpp-Taskflow in a real-

world VLSI timing analyzer. We consider our research project

OpenTimer, an open-source static timing analyzer that has

been used in many industrial and academic projects [13].

The first release v1 in 2015 implemented the levelization

algorithm (see Section II-D) using the OpenMP 4.5 task de-

pendency clause [7]. To overcome the performance bottleneck,

we rewrote the core incremental timing engine using Cpp-

Taskflow in the recent release v2. Since OpenTimer is a large

project of more than 50K lines of code, it is difficult to rewrite

the core with TBB. We focus on comparing with OpenMP

which had been available in v1.

Table II measures the software costs of two OpenTimer

versions using the Linux tool SLOCCount under the organic
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Fig. 7: Performance comparisons between Cpp-Taskflow, TBB, and
OpenMP on two micro-benchmarks.

TABLE II: Software Costs of OpenTimer v1 and v2

Tool Task Model LOC MCC Effort Dev Cost

v1 OpenMP 4.5 9,123 58 2.04 2.90 $275,287

v2 Cpp-Taskflow 4,482 20 0.97 1.83 $130,523

MCC: maximum cyclomatic complexity in a single function
Effort: development effort estimate, person-years (COCOMO model)
Dev: estimated average number of developers (efforts / schedule)
Cost: total estimated cost to develop (average salary = $56,286/year).

mode [11]. In OpenTimer v2, a large amount of exhaustive

OpenMP dependency clauses that were used to carry out task

dependencies are now replaced with only a few lines of flexible

Cpp-Taskflow code (9123 vs 4482). The maximum cyclomatic

complexity in a single function is reduced from 58 to 20.

We attribute this to Cpp-Taskflow’s programmability, which

can affect the way developers design efficient algorithms and

parallel decomposition strategies. For example, OpenTimer

v1 relied on a bucket-list data structure to model the task

dependency in a pipeline fashion using OpenMP. We found

it very difficult to go beyond this paradigm because of the

insufficient support for dynamic dependencies in OpenMP.

With Cpp-Taskflow in place, we can break this bottleneck and

easily model both static and dynamic task dependencies at

programming time and runtime. The task dependency graph

flows computations naturally and asynchronously with the

timing graph, producing faster runtime performance. Figure

8 shows an example task dependency graph (critical path on

black) that represent a single timing update on a sample circuit.

Figure 9 compares the performance between OpenTimer v1

and v2. We evaluated the runtime versus incremental iterations

under 16 CPUs on two industrial circuit designs tv80 (5.3K

gates and 5.3K nets) and vga lcd (139.5K gates and 139.6K

nets) with 45nm NanGate cell library [6]. Each incremental

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Fig. 8: An example task dependency graph of a single timing update.
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Fig. 9: Runtime comparisons of the incremental timing between
OpenTimer v1 (OpenMP) and v2 (Cpp-Taskflow) under 16 CPUs.

iteration refers a design modification followed by a timing

query to trigger a timing update. In v1, this includes the

time to reconstruct the data structure required by OpenMP

to alter the task dependencies. In v2, this includes the time to

create and launch a new task dependency graph to perform a

parallel timing update. As shown in Figure 9, v2 is consistently

faster than v1. The maximum speed-up is 9.8× on tv80 and

3.1× on vga lcd. This also demonstrated the performance of

Cpp-Taskflow on batch jobs each consisting of a different

task pattern (average speed-up is 2.9× on tv80 and 2.0× on

vga lcd). The fluctuation of the curve is caused by design

modifiers; some are local changes and others affect the entire

timing landscape giving rise to large task dependency graphs.

The scalability of Cpp-Taskflow is shown in Figure 10. We

used two million-scale designs, netcard (1.4M gates) and

leon3mp (1.2M gates) from the OpenCores [6], to evaluate

the runtime of v1 and v2 across different number of CPUs.

There are two important observations. First, v2 is slightly

slower than v1 at one CPU (3-4%), where all OpenMP’s

constructs are literally disabled. This shows the graph overhead

of Cpp-Taskflow; yet it is negligible. Second, v2 is consistently

faster than v1 regardless of CPU counts except one. This

justifies Cpp-Taskflow’s programming model largely improved

the design of a parallel VLSI timing analyzer that would not

be possible with OpenMP.

C. Deep Neural Network

We applied Cpp-Taskflow to speed up the training of a

deep neural network (DNN) classifier on the famous MNIST

dataset [14]. Training a DNN is an extremely compute-

intensive process and exposes many types of parallelism

at different levels. For example, the well-know TensorFlow

library permit users to alter inter- and intra-operation paral-

lelism [15]. Users can further employ advanced data structures
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Fig. 10: Scalability and CPU profile of Cpp-Taskflow on large circuit
designs netcard (8M tasks) and leon3mp (6.7M tasks).

(e.g., RunQueue) to control threads to enable more fine-

grained parallelism. However, these separate and low-level

concurrency controls impose large burden to users even for

experienced developers. The goal of this experiment is thus to

investigate a task-based approach to simplify the development

of parallel machine learning.

Fig. 11: Task decomposition strategy for parallel DNN training.

We considered two DNN architectures, three layers

(784×32×32×10) and five layers (784×64×32×16×8×10).

We used a gradient descent optimizer with a mini-batch size

100 and 0.001 learning rate on a training set of 60K images.

These parameters are inspired from the official TensorFlow

MNIST example [15]. We adopted a coarse-grained task de-

composition strategy that is applicable to any parallel training

frameworks (see Figure 11). First, we group the backward

propagation into two tasks, gradient calculation (Gi) and

weight update (Ui), and pipeline these tasks layer by layer.

Second, we create a task for per-epoch data shuffle to enable

epoch-level parallelism (Ei Sj). To avoid too much memory

overhead in storing shuffled data, we limit the degree of

storages to twice the number of threads. Spare threads can start

shuffling the data for subsequent epochs. Indeed, shuffling the

data can be very time-consuming especially when applications

adopt complex algorithms to randomize data blocks to improve

the stochastic gradient descent. All matrix operations are

encapsulated to standalone function calls written with Eigen-

3.3.7 [16].

TABLE III: Software Costs Comparison on Machine Learning

Cpp-Taskflow OpenMP TBB Sequential

LOC CC T LOC CC T LOC CC T LOC CC T

59 11 3 162 23 9 90 12 3 33 9 2

CC: cyclomatic complexity of the implementation
T: development time (in hours) by an experienced programmer
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Fig. 12: Performance comparisons between Cpp-Taskflow, TBB, and
OpenMP on training two different DNN classifiers.

Table III presents the software costs (reported by SLOC-

Count and Lizard [11], [12]) of Cpp-Taskflow, OpenMP, and

TBB in implementing our core parallel decomposition strategy.

In general, Cpp-Taskflow has the fewest LOC and the lowest

cyclomatic complexity. The development effort is measured

by the time it took for an experienced programmer (7-year

C++ and 2-year machine learning practice) to finish each

implementation. TBB’s programming model is very similar

to Cpp-Taskflow and thus both took roughly the same time

to develop (3 hours). However, it is tricky to implement

the task dependency graph with OpenMP. In order to ensure

proper dependencies between tasks, we need to hard-code an

order of task dependency clauses that is only specific to a

DNN architecture. The development time was twice longer

than that of Cpp-Taskflow. In fact, most time was spent on

debugging the order of dependent tasks. This measurement can

be subjective, but it does highlight the impact of a library’s

task model on engineering productivity.

Figure 12 shows the overall performance of each library

on training the two DNN architectures. Each epoch consists

of 4201 tasks and 6601 tasks for the three-layer DNN and

the five-layer DNN, respectively. All libraries reached per-

formance saturation at about 8–16 CPUs. Under 16 CPUs,
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Cpp-Taskflow is consistently faster than OpenMP and TBB on

both DNN architectures, regardless of the number of training

epochs. The margin becomes even larger when we increase the

epoch count. While the scalability is mostly dominated by the

maximum concurrency of the training graph, Cpp-Taskflow is

faster than others under different CPU numbers. For example,

Cpp-Taskflow finished the training of the three-layer DNN

by 1.38× and 1.14× faster than OpenMP and TBB under

16 CPUs. Similar trends can also be observed at other CPU

configurations.
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VI. RELATED WORKS

Cpp-Taskflow is mostly related to OpenMP task depen-

dency clause and TBB FlowGraph. In OpenMP 4.0, the task

group and depend clause (depend(type : list)) were

included into its directives [8]. The clause allows users to

define lists of data items that are only inputs, only outputs, or

both to form a task dependency graph. The biggest problem

of this paradigm is the programmability. Users need a descent

understanding about the graph structure in order to annotate

tasks in a specific order consistent with the sequential execu-

tion. Also, OpenMP has very limited support for increasingly

adopted C++14 and C++17 standards. This is unfortunate as

these new standards largely help the development of every

kind of applications. Similar issues exist in other directive-

driven libraries such as Cilk, Ompss, Cells, SMPSs, and

Nanos++ [17], [18], [19], [20]. On the other hand, Intel

released in 2017 the Threading Building Blocks (TBB) library

that supports loop-level parallelism and task-based program-

ming (FlowGraph) [9]. The TBB task model is object-oriented.

It supports a variety of methods to create a highly optimized

flow graph and provides users runtime interaction with the

scheduler. Nevertheless, TBB does have drawbacks, mostly

from an ease-of-programming standpoint. Because of various

supports, the TBB task graph description language is very

complex and can often result in handwritten code which are

hard to debug and read.

The high-performance computing (HPC) community has

long been managing task-based programming frameworks.

Many of such systems are inspired by scientific computing and

clusters. Chapel, X10, Charm++, HPX, and Legion introduced

new domain specific languages (DSL) and runtime to support

tasking in a global address space (GAS) environment [21],

[22], [23], [24], [25]. QURAK, StarPU, PaRSEC, and ParalleX

are capable of tracking data between different memory and

scheduling tasks on heterogeneous resources [26], [27], [28],

[29]. While these systems are orthogonal to Cpp-Taskflow, we

are leveraging their experience to handle new types of work-

load. An on-going project is using Cpp-Taskflow to improve

TensorFlow’s tasking kernel on heterogeneous architectures.

VII. CONCLUSION

In this paper, we have presented Cpp-Taskflow, a new

C++ library to help developers quickly write parallel pro-

grams using the task-based approach. Cpp-Taskflow leverages

modern C++ to enable efficient implementations of parallel

decomposition strategies for both regular loop-based paral-

lelism and irregular patterns such as graph algorithms and

dynamic flows. We have evaluated Cpp-Taskflow on both

micro-benchmarks and real-world applications. On a machine

learning example, Cpp-Taskflow achieved 1.5–2.7× less cod-

ing complexity and 14–38% speed-up over two industrial-

strength libraries OpenMP Task Dependency Clause and Intel

Threading Building Blocks (TBB) FlowGraph.
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