
A Modern C++ Parallel Task Programming Library

Chun-Xun Lin∗

ECE Dept, UIUC, IL

clin99@illinois.edu

Tsung-Wei Huang∗

ECE Dept, University of

Utah, UT

twh760812@gmail.com

Guannan Guo
ECE Dept, UIUC, IL

gguo4@illinois.edu

Martin D. F. Wong
ECE Dept, UIUC, IL

mdfwong@illinois.edu

ABSTRACT

In this paper we present Cpp-Taskflow, a C++ parallel program-

ming library that enables users to quickly develop parallel appli-

cations using the task dependency graph model. Developers for-

mulate their application as a task dependency graph and Cpp-

Taskflow will manage the task execution and concurrency con-

trol. The task graph model is expressive and composable. It can

express both regular and irregular parallel patterns, and develop-

ers can quickly compose large programs from small parallel mod-

ules. Cpp-Taskflow has an intuitive and unified API set. Users only

need to learn the APIs to build and dispatch a task graph and

no complex parallel programming concept is required. We have

conducted experiments using both micro-benchmarks and real-

world applications and Cpp-Taskflow outperforms state-of-the-art

parallel programming libraries in both runtime and coding effort.

Cpp-Taskflow is open-source and has been used in both industry

and academic projects. From our users’ feedback, we believe Cpp-

Taskflow can benefit the industry and research community greatly

through its ease-of-programming and inspire new research direc-

tions in multimedia system/software design.

KEYWORDS

Parallel programming; task parallelism; task dependency graph

ACM Reference Format:

Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin D. F. Wong.

2019. A Modern C++ Parallel Task Programming Library. In Proceed-

ings of the 27th ACM International Conference on Multimedia (MM ’19),

October 21–25, 2019, Nice, France. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3343031.3350537

1 INTRODUCTION

Multicore processors are prevalent from desktops, laptops, tablets

to mobile devices. How to effectively utilize those computing re-

sources to maximize software performance? This is a critical ques-

tion that software developers must consider, especiallywhen build-

ing complex parallel applications such as artificial intelligence, nu-

merical simulation, machine learning and multimedia big data an-

alytics [1] [2] [3] [4] [5]. Writing parallel code is considered much

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’19, October 21–25, 2019, Nice, France

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3350537

more difficult than the sequential counterpart. Programmers have

to pay extra attentions to the concurrency control to avoid unex-

pected behavior during runtime, for example, using locks to pro-

tect shared data or atomic variables to avoid data race. The situ-

ation is getting more challenging when applications exhibit com-

plex data or operation dependency, which is typical in real-world

problems. As a result, it’s necessary to have an efficient approach

to write parallel code.

In this paper, we present Cpp-Taskflow, a modern C++ task-

based parallel programming library. Cpp-Taskflow was motivated

from a real-world project of VLSI timing analysis [6]. Cpp-

Taskflow lets users express their parallelismusing the intuitive task

graph model. The task graph model is simple yet very powerful as

it can represent both regular and irregular parallel patterns. The

task graph model abstracts away complex concurrency manage-

ment and allows users to focus on exploiting parallelism within

their applications. Cpp-Taskflow provides well-designed APIs to

keep the code concise and readable. We have a unified task graph

construction interface for both static and dynamic parallelism, so

users can learn those APIs quickly and utilize them to implement

various parallel patterns. Cpp-Taskflow supports visualization for

program debugging and profiling. Users can dump the task graph

to inspect the program execution flow and they can view the thread

activities in a Chrome browser. We have conducted experiments

on a set of micro-benchmarks and a real-world application [7]

against Intel Threading Building Blocks [8] and OpenMP [9]. Cpp-

Taskflow achieves comparable performance with fewer lines of

code, faster runtime, and better scalability.

We understand each library has its own uniqueness and value,

and it’s up to users to decide which best suits their needs.

Cpp-Taskflow has been used in many industrial and academic

projects [10]. We are committed to free sharing of our technical in-

novation to facilitate the research in parallel computing, machine

learning, and multimedia. We are working actively with our users

to improve Cpp-Taskflow. The project is open-source and more de-

tails can be found in [10].

2 CPP-TASKFLOW

In Cpp-Taskflow, the programming is centered around two classes:

tf::Taskflow and tf::Executor . We will explain how to use them in

this section.

2.1 Task Dependency Graph

In Cpp-Taskflow, a task is a C++ object of Callable type [7]. To

create tasks, the first step is to create an object of the tf::Taskflow

class. A taskflow object allows you to build a task dependency

graph where nodes are tasks and directed edges indicate depen-

dency. Listing 1 shows an example of adding three tasks via the

https://doi.org/10.1145/3343031.3350537
https://doi.org/10.1145/3343031.3350537

emplace method. The emplace method can create multiple tasks at

one time. After tasks are created, users can assign names to tasks

and specify the dependency between tasks via the name and precede

method, respectively. A task A precedes a task B if task B can only

run after task A completes its execution.

1 t f : : T a s k f l ow t a s k f l ow ;

2

3 / / C r e a t e a t a s k

4 auto taskA = t a s k f l ow . emplace (

5 [] () { s t d : : cout << " Task A\ n " ; }

6) ;

7

8 / / C r e a t e two t a s k s a t one t ime

9 auto [taskB , t askC] = t a s k f l ow . emplace (

10 [] () { s t d : : cout << " Task B \ n " ; } ,

11 [] () { s t d : : cout << " Task C \ n " ; } ,

12) ;

13

14 / / Name the t a s k s

15 taskA . name (" taskA ") ;

16

17 / / S p e c i f y the dependency

18 taskA . p r e ced e (taskB , t askC) ;

Listing 1: Create a task dependency graph.

2.2 Dynamic Tasking

Cpp-Taskflow has another powerful feature: dynamic tasking that

enables a task to create and dispatch a task dependency graph at

runtime to obtain dynamic parallelism. Listing 2 shows an example

of dynamic tasking. In this example task B spawns a task depen-

dency graph that has three tasks. A task that requires dynamic par-

allelism has to take an additional argument of type tf::Subflow and

uses the emplace method to create a new task dependency graph.

The new task dependency graph will by default join its parent task.

However, users canmake it run independently by calling the detach

method. A detached task dependency graph will join the end of its

parent’s task dependency graph. Figure 1 shows the spawned task

dependency graphs in joined and detached modes, respectively.

Dynamic tasking empowers users to parallelize frequently used

computing patterns such as recursive and nested flows.

1 t f : : T a s k f l ow f low ;

2

3 / / C r e a t e t h r e e t a s k s

4 auto [taskA , taskC , taskD] = f l ow . emplace (

5 [] () { s t d : : cout << " Task A\ n " ; } ,

6 [] () { s t d : : cout << " Task C \ n " ; } ,

7 [] () { s t d : : cout << " Task D\ n " ; }

8) ;

9

10 / / C r e a t e a t a s k with sub f l ow

11 auto taskB = f l ow . emplace (

12 [] (auto &sub f l ow) {

13 s t d : : cout << " Task B \ n " ;

14 / / Spawn a new t a s k dependency graph

15 auto [B1 , B2 , B3] = sub f l ow . emplace (

16 [] () { s t d : : cout << " Task B1 \ n " ; } ,

17 [] () { s t d : : cout << " Task B2 \ n " ; } ,

18 [] () { s t d : : cout << " Task B3 \ n " ; }

19) ;

20 B3 . ga th e r (B1 , B2) ;

21

22 / / Detach the new t a s k dependency graph

23 sub f l ow . d e t a ch () ;

24 }) ;

25

26 / / S p e c i f y the dependency

27 taskA . p r e ced e (taskB , t askC) ;

28 taskD . ga th e r (taskB , t askC) ;

Listing 2: An example of dynamic tasking.

Subflow_TaskB

TaskB

TaskD

TaskB3

TaskB2

TaskB1

TaskCTaskA

(a) A joined subflow.

Subflow_TaskB

TaskB

TaskD

TaskB3
TaskB2

TaskB1

TaskC
TaskA

(b) A detached subflow.

Figure 1: Comparison of joined and detached subflows.

2.3 Composition

An useful feature of task dependency graph is the composability.

Users can use the composed_of method to compose several task de-

pendency graphs to a large and complex task dependency graph.

The composed_of method returns a module task. Users can use the

precede method to add dependency between module tasks and

other tasks. Listing 3 shows an example of task dependency graph

composition.

1 t f : : T a s k f l o w fA ;

2

3 / / C r e a t e f ou r t a s k s

4 auto [fA1 , fA2 , fA3 , fA4] = fA . emplace (

5 [] () { s t d : : cout << " Task fA1 \ n " ; } ,

6 . . .

7) ;

8 fA1 . p r e ced e (fA2 , fA3) ;

9 fA4 . ga th e r (fA2 , fA3) ;

10

11 t f : : T a s k f l o w fB ;

12

13 / / C r e a t e t h r e e t a s k s

14 auto [fB1 , fB2 , fB3] = fB . emplace (

15 [] () { s t d : : cout << " Task fB1 \ n " ; } ,

16 . . .

17) ;

18

19 auto moduleA = fB . composed_of (fA) ;

20

21 fB1 . p r e ced e (moduleA , fB2) ;

22 moduleA . p r e ced e (fB3) ;

23 fB2 . p r e ced e (fB3) ;

Listing 3: An example of task dependency graph

composition.

Figure 2: The task dependency graphs of the example in List-

ing 3.

2.4 Execution

After creating task dependency graphs, the next step is to dispatch

graphs to an executor object of type tf::Executor . An executor ob-

ject manages thread construction and destruction and provides sev-

eral methods to execute task dependency graphs through an effi-

cient work-stealing algorithm. Table 1 summarizes the execution

methods and Listing 4 demonstrates the usage of those execution

methods.

Method Description

run Execute a graph once

run_n Execute a graph multiple times

run_until Execute a graph until a condition is met

wait_for_all Wait until all running graphs finish

Table 1: Summary of execution methods.

1 t f : : T a s k f l ow t f ;

2

3 / / Add t a s k s to t f

4 . . .

5

6 t f : : E x e c u t o r e x e cu to r ;

7

8 ex e cu to r . run (t f) ; / / Run the f l ow once

9 ex e cu to r . run _n (t f , 6) ; / / Run the f l ow s i x t ime s

10 / / Run the f l ow u n t i l the number becomes 0

11 ex e cu to r . run _ u n t i l (t f , [number =4] () mutable {

12 r e t u r n number−− == 0 :

13 }) ;

Listing 4: Demonstration of different execution methods.

2.5 Debugging and Profiling

Debugging a parallel program is very challenging due to the non-

deterministic nature. Cpp-Taskflow supports the visualization of

task dependency graphs to let users inspect the task execution flow.

Users can use the name method to assign a taskflow object a name

and the dump method to export the object’s task graph in DOT

format [11]. Listing 5 shows an example of naming and dumping

a task dependency graph. Figure 3 demonstrates the task depen-

dency graphs of two taskflow objects.

1 t f : : T a s k f l ow fA ;

2

3 / / Naming the t a s k f l ow o b j e c t

4 fA . name (" Taskflow_A ") ;

5

6 / / Add seven t a s k s

7 auto [A1 , A2 , A3 , A4 , A5 , A6 , A7] = fA . emplace (

8 [] () { s t d : : cout << "A1 \ n " ; } ,

9 . . .

10) ;

11

12 / / S p e c i f y dependency

13 A1 . p r e ced e (A3 , A4) ;

14 A2 . p r e ced e (A5) ;

15 A6 . ga th e r (A3 , A5) ;

16 A4 . p r e ced e (A7) ;

17

18 / / Dump the t a s k dependency graph

19 s t d : : cout << fA . dump () << s t d : : e nd l ;

20

21 t f : : T a s k f l o w fB ;

22

23 / / Add f i v e t a s k s

24 auto [B1 , B2 , B3 , B4 , B5] = fB . emplace (

25 [] () { s t d : : cout << " B1 \ n " ; } ,

26 . . .

27) ;

28

29 / / Compose t a s k f l ow A

30 auto moduleA1 = fB . composed_of (fA) ;

31

32 / / S p e c i f y dependency

33 B1 . p r e ced e (B2 , moduleA1) ;

34 B2 . p r e ced e (B3 , B4) ;

35 B5 . ga th e r (B3 , B4 , moduleA1) ;

36

37 s t d : : cout << fB . dump () << s t d : : e nd l ;

Listing 5: Visualization of a task dependency graph.

Figure 3: The task dependency graphs of two taskflow ob-

jects in Listing 5.

Profiling is very important when developers analyze their ap-

plication’s performance. Cpp-Taskflow allows users to record the

thread activities and visualize them in a Chrome browser. To en-

able profiling, users create an observer of type tf::Executor Observer

through executor’smake_observermethod. An observer will record

each task’s start time (via on_entry method) and end time (via

on_exit method) during execution. The observer can dump the

recorded timestamps into a JSON file and users can visualize the

execution timeline by loading the JSON file in the chrome://tracing

developer tool. Listing 6 shows how to create an observer to moni-

tor the thread activities. Figure 4 displays the task execution time-

line in a Chrome browser.

1 t f : : T a s k f l o w t a s k f l ow ;

2 t f : : E x e c u t o r e x e cu to r ;

3 / / C r e a t e an ob s e r v e r

4 auto ob s e r v e r = ex e cu to r . make_obse rve r<

t f : : E x e c u t o r Obse rve r > () ;

5

6 / / Add t a s k s and d i s p a t c h the f l ow to ex e cu t i on

7 . . .

8

9 / / Dump the t imes tamps to a JSON f i l e

10 s t d : : o f s t r e am o f s (" t imes tamps . j s on ") ;

11 obse rve r −>dump (o f s) ;

Listing 6: Use an observer to monitor the thread activities.

Figure 4: Thread activities displayed in chrome://tracing.

3 A MACHINE LEARNING APPLICATION

Machine learning has been successfully applied to several multi-

media topics such as image classification, speech recognition and

so on [4] [5].We demonstrate applying Cpp-Taskflow to parallelize

a machine learning application: MNIST [12] dataset, and compare

its performance and coding effort with OpenMP [9]. The MNIST

dataset contains images of handwritten digits and it is widely used

to test the effectiveness of machine learning algorithms. In this

demonstration, we build a 5-layer deep neural network (DNN) to

classify those images.We adopt the task pipeline strategy proposed

by [7] to parallelize the DNN training. Each batch starts with a

task for forward propagation and then followed by a sequence of

gradient calculation and weight update tasks for each layer. We

pipeline the gradient calculation and weight update tasks between

successive layers to enable parallelism within each batch. Next we

create tasks for data shuffle per epoch. We allocate additional data

storages to have a shuffle task start earlier preparing the data for

later epochs.We compare the implementations of OpenMP [9] and

Cpp-Taskflow. OpenMP is the most popular parallel programming

library in high-performance computing and we use OpenMP’s task

depend clause to implement this parallelization strategy. For Cpp-

Taskflow, we implement this application using the taskflow object

and use the executor’s run method for execution. We run all im-

plementations on a machine with a Intel Xeon W-2175 processor

and 128 GB memory and we launch 10 threads in this experiment.

The operating system is Ubuntu 18.04 and the OpenMP version is

4.5 (201511). The learning rate is set to 0.0001 and for each num-

ber of epochs we run five times and take the average. During the

experiment we use the system command taskset to bond the pro-

cess to the first 10 cores. Figure 5 plots the runtime of both im-

plementations and Table 2 shows the code complexity measured

by Lizard [13]1. The implementation of Cpp-Taskflow is slightly

faster than OpenMP. Regarding the code complexity, OpenMP is

35% longer than Cpp-Taskflow in lines of code.

1Because Lizard takes compiler directives (starts with #) as a comment, we remove

the # when measuring the OpenMP implementation.

10 20 30 40 50 60 70 80 90 100 110 120 130

0

50

100

Number of epochs

R
u
n
ti
m
e
(s
ec
)

MNIST (10 cores)

OpenMP

Taskflow

Figure 5: DNN training runtime of OpenMP and Cpp-

Taskflow with using taskflow object.

Table 2: Code complexity [13] of the three implementations.

Library Total NLOC Avg Token Avg CCN

OpenMP 93 1058 11

Taskflow 60 600 11

NLOC: lines of code. CCN: cyclomatic complexity number.

4 AVAILABILITY

Cpp-Taskflow is open-source on Github [10] under MIT license.

The API documentation, tutorials and cookbook are also available

on Github. We have presented Cpp-Taskflow at CppCon which

is the premier C++ developer conference and the video is on

YouTube [14].

5 ACKNOWLEDGEMENT

Cpp-Taskflow is supported by NSF Grant CCF-1718883 and

DARPA Grant FA 8650-18-2-7843.

REFERENCES
[1] W. Zhu, P. Cui, Z. Wang, and G. Hua. Multimedia big data computing. IEEE

MultiMedia, 22(3):96–c3, July 2015.
[2] Z. Wang, S. Mao, L. Yang, and P. Tang. A survey of multimedia big data. China

Communications, 15(1):155–176, Jan 2018.
[3] Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, Mei-Ling Shyu, and S. S. Iyen-

gar. Multimedia big data analytics: A survey. ACM Comput. Surv., 51(1):10:1–
10:34, January 2018.

[4] Jitao Sang, Jun Yu, Ramesh Jain, Rainer Lienhart, Peng Cui, and Jiashi Feng. Deep
learning for multimedia: Science or technology? In Proceedings of the 26th ACM
International Conference on Multimedia, MM ’18, pages 1354–1355, New York,
NY, USA, 2018. ACM.

[5] Y. Yan,M. Chen,M. Shyu, and S. Chen. Deep learning for imbalancedmultimedia
data classification. In 2015 IEEE International Symposium on Multimedia (ISM),
pages 483–488, Dec 2015.

[6] T.-W Huang and Martin D. F. Wong. OpenTimer: A high-performance timing
analysis tool. In IEEE/ACM ICCAD, pages 895–902, 2015.

[7] T.-W Huang, C.-X. Lin, Guannan Guo, and Martin D. F. Wong. Cpp-Taskflow:
Fast Task-based Parallel Programming using Modern C++. IEEE IPDPS, pages
974–983, 2019.

[8] Intel Threading Building Blocks. [Online]. Available:
https://www.threadingbuildingblocks.org.

[9] OpenMP. [Online]. Available: https://www.openmp.org/.
[10] Cpp-Taskflow. [Online]. Available: https://github.com/cpp-taskflow/cpp-taskflow.
[11] The DOT Language. [Online]. Available: https://www.graphviz.org/.
[12] MNIST. [Online]. Available: http://yann.lecun.com/exdb/mnist/.
[13] Lizard. [Online]. Available: http://www.lizard.ws/.
[14] Cpp-Taskflow lightning talk. [Online].

Available: https://www.youtube.com/watch?v=ho9bqIJkvkc.

https://www.threadingbuildingblocks.org
https://www.openmp.org/
https://github.com/cpp-taskflow/cpp-taskflow
https://www.graphviz.org/
http://yann.lecun.com/exdb/mnist/
http://www.lizard.ws/
https://www.youtube.com/watch?v=ho9bqIJkvkc

	Abstract
	1 Introduction
	2 Cpp-Taskflow
	2.1 Task Dependency Graph
	2.2 Dynamic Tasking
	2.3 Composition
	2.4 Execution
	2.5 Debugging and Profiling

	3 A Machine Learning Application
	4 Availability
	5 Acknowledgement
	References

