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Abstract—This article introduces Cpp-Taskflow, a high-
performance parallel task programming system, to streamline
the building of large and complex parallel applications. Cpp-
Taskflow leverages the power of modern C++ and task-based
approaches to enable efficient implementations of parallel decom-
position strategies. Our programming model can quickly handle
not only traditional loop-level parallelism but also irregular pat-
terns, such as graph algorithms and dynamic control flows.
Compared with existing libraries, Cpp-Taskflow is more cost
efficient in performance scaling and software integration. We
have evaluated Cpp-Taskflow on both micro-benchmarks and
large-scale design automation problems of million-scale tasking.
In a particular timing analysis workload, Cpp-Taskflow outper-
formed OpenMP by 2× faster using 2× fewer lines of code. We
have also shown Cpp-Taskflow achieved up to 47.81% speed-up
with 28.5% less code over the industrial-strength library, Intel
Threading Building Blocks, on a detailed placement problem.

Index Terms—Computer-aided design (CAD), parallel pro-
gramming systems, task parallelism.

I. INTRODUCTION

DEVELOPING high-performance parallel computer-aided
design (CAD) software is an extremely challenging job.

CAD algorithms consist of a broad mix of domain knowledge,
irregular compute patterns, layered heuristics, expert-level
parameter tuning, and many computing components that are
not part of regular software development. Existing ad-hoc
attempts at parallelizing CAD applications focus on incremen-
tally recoding existing CAD software using portable operating
system interface (POSIX) threads, OpenMP, or C/C++11
thread libraries [2]. While results of some of those efforts have
shown scalability, most are not scaling beyond a few threads,
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and some CAD tools have not been replaced with more scal-
able equivalents at all. Neither parallel programming models
nor runtimes, despite some improvements, are mature enough
to allow CAD engineers to migrate their applications to par-
allel targets in a timely manner [1], [3], [4]. The growing
computational complexity will soon far exceed what existing
ad-hoc approaches will be able to achieve. In order to continue
scaling application performance, we must find a new solution
that allows developers to efficiently rearchitect CAD software
to discover and express high degrees of parallelism.

Considering the long-term goal of enabling CAD amenable
to parallelization, the Cpp-Taskflow project addresses the ques-
tion of “how can we make it easier for C++ developers to
quickly write parallel programs with high performance and
simultaneous high productivity?” Through the evolution of
parallel programming standards, task-based model has been
proven to pave the path to scale up with future processor
generations and architectures [5]. The traditional loop-based
parallelism is not sufficient for exploiting the scalability of
modern CAD tools and complex parallel algorithms that
require irregular compute patterns, such as graph traversal
and dynamic control flows [6]. For many C++ developers,
writing a correct and efficient task parallel program is chal-
lenging, not only because of the capability of a tasking library
but also its productivity to express a parallel computation
task graph. Programmability of a library has large impact
on the way C++ developers organize their parallel code,
from subtle implementation details to algorithm-level deci-
sions of parallel decomposition strategies [7]. However, related
research remains nascent, particularly on the front of using
modern C++ to enhance the functionality and performance
productivity that were previously not possible.

Consequently, we introduce Cpp-Taskflow, a general-
purpose parallel task programming system to help C++
developers quickly write parallel applications using task
dependency graphs [8]. Listing 1 demonstrates a simple Cpp-
Taskflow program. The code explains itself. The program
creates a task dependency graph of four tasks, A, B, C, and D.
Each task is a callable object which can be a C++ lambda,
a function object, or a binding expression. The dependency
constraints state that task A runs before task B and task C,
and task D runs after task B and task C. There is no explicit
thread managements or complex lock controls in the code.

The design principle of Cpp-Taskflow is to let users write
simple and efficient parallel code. What we advocate here is
expressive, readable, and transparent code that scales to large
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Listing 1. Simple task dependency graph in Cpp-Taskflow.

number of cores. Users write a parallel program in terms of
tasks rather than threads and they do not need to deal with
any hardware or system details. Cpp-Taskflow explores a min-
imum set of core routines that are sufficient enough for users
to implement a broad set of parallel decomposition strate-
gies such as parallel loops, graph algorithms, and dynamic
flows. We leverage the power of modern C++ to strike a
balance between performance and usability of our application
programming interface (API). Our API is not only flexible on
the user front but is also extensible with the evolution of future
C++. We summarize our contributions as follows.

1) Programming Model: Cpp-Taskflow developed a sim-
ple and efficient parallel task programming model using
modern C++17. Developers can leverage powerful
modern C++ features and standard libraries together
with our parallelization framework to implement fast and
scalable parallel programs. Our user experiences lead us
to believe that while it requires some effort to learn,
a C++ programmer can master our APIs and apply
Cpp-Taskflow to his/her jobs in just a few hours.

2) Transparency: Cpp-Taskflow is transparent. Users need
no understanding of standard concurrency controls, such
as thread managements and lock mechanisms, which
are difficult to program correctly. Instead, we offer a
lightweight abstraction for users to focus on high-level
developments and leave system details to Cpp-Taskflow.

3) Composition: Cpp-Taskflow is composable. Users can
create large parallel graphs through composition of mod-
ular and reusable blocks that are easier to optimize at
an individual scope. The program runs on a multicore
machine with automatic scheduling optimization across
different layers of composed task graphs.

4) Unified Interface: Cpp-Taskflow has a unified graph
description model that empowers developers with both
static and dynamic graph constructions and refine-
ment to fully exploit task parallelism. The same API
used for static tasking all applies to dynamic tasking.
Programmers need not to learn a different API set. The
unified interface makes it easier to develop and debug
complex parallel decomposition strategies.

We have evaluated Cpp-Taskflow on both micro-
benchmarks and real-world applications. The performance

Fig. 1. Timing graph of an industrial design [11]. (a) Circuit (1.01 mm2.
(b) Graph (3M gates). (c) Signal path.

scales from a single processor to multiple cores with millions
of tasks. We believe Cpp-Taskflow stands out as a unique
tasking library considering the ensemble of software tradeoffs
and architecture decisions we have made. Cpp-Taskflow
is open-source and is being used by many industrial and
academic research projects [8]. That being said, different
systems have their pros and cons, and deserve a particular
reason to exist. We would like to position Cpp-Taskflow as
a higher-level alternative to help streamline the building of
large and complex parallel applications.

II. PROJECT MOTIVATION

Cpp-Taskflow is motivated by our research project on devel-
oping a high-performance timing analysis tool for very large
scale integration (VLSI) systems [9]. Timing analysis is a very
important component in the overall design flow [10]. It verifies
the expected timing behaviors of a digital circuit to ensure cor-
rect functionalities after tape-out. During the chip design flow,
the timing analyzer is used as an inner loop of an optimization
algorithm to iteratively and incrementally improve the timing
of a circuit layout. The optimization engine typically applies
millions of design transforms to modify the design both locally
and globally, and the timer has to quickly update the timing
information to guarantee slack integrity. However, today’s cir-
cuit is very large and is made up of billions of transistors.
Fig. 1 shows an analysis graph on an industrial design of 2M
gates [11]. Timing a million-gate circuit can take several hours
or days for sign-off. Analysis loops require fairly expensive
computations and must take advantage of multicore to speed
up the runtime.

A. Challenge 1: Complex Task Dependencies

The biggest challenge to write a parallel timing analyzer
is the large and complex task dependencies. In order to
construct a timing graph, we need to collect a number of
information, such as load capacitance, slew, delay, and arrival
time. However, these quantities are dependent of each other
and are expensive to compute. The resulting task dependency
in terms of encapsulated function calls is very complex. For
example, we need to sweep the graph to forward propagate
the arrival time at each pin and then backward propagate
the required arrival time at each pin. Then we construct the
timing graph based on the two timing metrics and perform
path searching on top of the graph. In order to obtain the
arrival time at a pin, we need to collect a number of tim-
ing information, such as load capacitance, slew, and delay.
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Also, we cannot start the backward propagation until all
computations in the forward phase finish. The resulting task
dependency in terms of encapsulated function calls is very
complex. For example, in a million-gate circuit design, the
graph can encounter billions of tasks and dependencies. In
fact, many workloads in the VLSI domain are more con-
nected and complex than that of social media and scientific
computing [11].

B. Challenge 2: Irregular Compute Pattern

Updating a timing graph involves extremely irregular
memory patterns and significant diverse behavior across dif-
ferent computations. The task programming model must be
flexible for both regular and irregular blocks, whether the data
is structured in local blocks or is flat in the global scope. We
must be able to capture different data representations inside a
task, for carrying out different timing propagation algorithms
and pruning heuristics. Exploiting parallelism from this type of
problem formulation is very different from data-oriented paral-
lel computing, such as linear algebra, scientific computing, and
single instruction multiple data (SIMD)-style parallelization.
Instead, the flexibility to encapsulate a variety of timing work-
loads into a task unit plays a key role in developing efficient
parallel decomposition strategies.

C. Challenge 3: Dynamic Control Flows

Optimization and physical synthesis engines often call an
incremental timer millions of times in their inner loop. For
large designs, the process can take several hours or days to fin-
ish. To mitigate the long runtime, the timing analyzer needs to
incrementally answer timing queries after one or more changes
to the circuit were made. The process is highly iterative and
unpredictable, and consists of many dynamic, cyclic, and con-
ditional workloads that cannot be foreseen in static graph
constructions.

D. State-of-the-Art Solutions and Their Bottleneck

Almost all existing timing analyzers, including both aca-
demic and industrial tools, were written in C++ using loop-
based parallelization [9]–[12]. A common approach levelizes
the circuit graph into a topological order, and applies language-
specific “parallel_for” level by level (see Fig. 2). For each
node, we need to update a number of dependent tasks, such
as slew, parasitics, delay, and required arrival time [9]. This
level-based decomposition strategy is advantageous in its sim-
ple pipeline concept. We can easily apply parallel_for to each
level and update the timing of nodes at the same level in paral-
lel. However, this suffers from many performance pitfalls. For
example, the number of nodes can vary at different levels, and
the resulting thread utilization can be significantly unbalanced.
Also, there is a synchronization barrier between successive lev-
els to model the task dependencies. The overhead is large for
graph with long data paths.

Two mainstream library choices to implement this loop-
based decomposition strategy are OpenMP task depen-
dency clause and Intel Threading Building Blocks (TBBs)
FlowGraph [13], [14]. However, there are many limitations

Fig. 2. Loop-based parallel timing propagations. Each level applies a
“parallel_for” to update timing from the fanin of each node [9].

in using these libraries. For example, OpenMP relies on static
task annotations with a valid order in line with a sequential
execution, making it very difficult to handle dynamic flows
where the graph structure is unknown at programming time.
TBB is disadvantageous mostly from an ease-of-programming
standpoint. Its task graph description language is very complex
and often results in large source lines of code (LOC) that are
hard to read and debug. There are libraries designed for graph
processing [15], [16]. However, most of them are restrictive to
graph problems and cannot capture or pipeline generic tasks
beyond the graph formulation. After many years of research,
we and our industry partners conclude the biggest hurdle to
a scalable parallel timing analyzer is a suitable parallel task
programming model. Inspired by our problem domains, we are
interested in million-scale tasks with runtime in the order of
seconds to minutes. We focus on C++ on a shared memory
architecture.

III. CPP-TASKFLOW

While Cpp-Taskflow was initiated to support our VLSI
projects, we decided to disclose its knowledge and make it
an open-source tasking library for generic parallel program-
ming [8]

Cpp-Taskflow aims to help C++ developers quickly
write high-performance parallel programs with
simultaneous high productivity using task models.

— Cpp-Taskflow’s Project Mantra

A. Create Task

Cpp-Taskflow is object-oriented. A task in Cpp-Taskflow is
defined as A task can be either a functor, a lambda expres-
sion, a bind expression, or other class objects that define the
operator (). Listing 2 demonstrates the creation of a task in
Cpp-Taskflow. The first entry to a Cpp-Taskflow program is
declaring a taskflow object of type tf::Taskflow. A task-
flow object is where to create a task dependency graph. The
method emplace creates a task from a given callable object.
Users can create one or multiple tasks at one time using C++
structured binding.

Each time users create a task, the taskflow object adds a
node to the present graph and returns a task handle. A task
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Listing 2. Create three tasks from a taskflow object.

Fig. 3. Static task dependency graph of seven tasks and eight dependency
constraints.

handle is a lightweight class objects that wraps up a particular
node in a graph. Adding this layer of abstraction provides
an extensible mechanism to modify the task attributes and
prevents users from direct access to the internal graph stor-
age. Each node has a general-purpose polymorphic function
wrapper to store and invoke any callable target (task) given
by users. Hereafter, we use “task A” to represent the task
stored in node A. A task handle can be empty, often used
as a placeholder when it is not associated with a node. This is
particularly useful when the callable target cannot be decided
until some points at the program, while we need to preallocate
a storage for the task in advance.

B. Static Tasking

After tasks are created, the next step is to add dependen-
cies. A task dependency is a directed edge from one task A to
another task B such that task A runs before task B. To be more
specific, node B will not invoke its task until node A finishes
its task. Cpp-Taskflow defines two very intuitive methods,
precede and succed for users to create a dependency from
one task to another. The most basic graph concept in Cpp-
Taskflow is static tasking. Static tasking captures the static
parallel structure of a decomposition strategy and is defined
only by the program itself. It has a flat task hierarchy and
cannot spawn new tasks from a running dependency graph.

Fig. 3 shows an example of static task dependency graph
and Listing 3 gives its implementation in Cpp-Taskflow. The
task dependency graph consists of seven tasks and eight depen-
dencies. Task a0 runs before task a1, task a1 runs before
task a2 and task b2, and task a2 runs before task a3. On the
other side, task b0 runs before task b1, task b1 runs before
task a2 and task b2, and task b2 runs before task a3. These
task dependencies are described intuitively using the meth-
ods precede and succeed from individual task handles.
We implemented precede using C++ function parameter
pack, allowing users to write multiple dependencies at one
time. Listings 4 and 5 demonstrate the counterparts written in
OpenMP task dependency clause and TBB FlowGraph. While
analyzing programmability is a very complex procedure, we
believe in this example Cpp-Taskflow is more concise and

Listing 3. Cpp-Taskflow code of Fig. 3 (17 LOC and 183 tokens).

effective than the others. In terms of LOC, the task depen-
dency graph takes only 17 lines of Cpp-Taskflow code but 22
and 37 lines for OpenMP and TBB, respectively. Compared
with OpenMP, programmers need to explicitly specify the
dependency clause on both sides of a constraint. For instance,
we declare eight variables (a0_a1, a1_a2, a1_b2, a2_a3,
b0_b1, b1_b2, b1_a2, and b2_a3) and place each in the
the depend clause to capture the eight dependent links in the
task graph. This hard-coded list makes it very inflexible for
programmers to modify the graph as it requires another hand-
written clause list. Also, it is users’ responsibility to identify
a correct topological order to describe each task such that
it is consistent with the sequential program flow. For exam-
ple, the #pragma task block for a1 cannot go above a0.
Otherwise, the program can produce unexpected results when
OpenMP is disabled in a different compiler setting. On the
other hand, the TBB-based implementation is quite verbose.
Programmers need to understand the complex template class
continue_node and the role of the message class before
starting with a simple task dependency graph. To run a flow
graph, users need to explicitly tell TBB the source tasks and
call the method try_put to either enable a nominal message
or an actual data input. All these add up to extra programming
efforts.

C. Dynamic Tasking

In contrast to static tasking, dynamic tasking refers to the
creation of a task dependency graph at runtime or, more specif-
ically, in the execution context of a task. Dynamic tasks are
created from a running graph. These tasks are spawned from
a parent task and are grouped together to form a task depen-
dency graph called subflow. Dynamic tasking is useful when
the graph is not able to draw before executing a task or a
program. We applied std::variant to our polymorphic
function wrapper and exposed the same task building blocks
to users for both static and dynamic graph constructions. The
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Listing 4. OpenMP code of Fig. 3 (22 LOC and 181 tokens).

same methods defined for static tasking are all applicable for
dynamic tasking. Programmers do not need to learn a different
API set to create dynamic workloads.

Listing 6 demonstrates Cpp-Taskflow’s implementation on
a dynamic task dependency graph in Fig. 4. The task depen-
dency graph has four static tasks, A, C, D, and B. The
precedence constraints force task A to run before tasks B and
C, and task D to run after tasks B and C. During the execu-
tion of task B, it spawns another task dependency graph of
three tasks B1, B2, and B3 (marked as cyan), where task B1
and task B2 run before task B3. In Cpp-Taskflow, tasks B1,
B2, and B3 are grouped to a subflow parented at task B.
We allow users to describe this dynamic dependencies using
the same method emplace, with one additional argument
of type tf::Subflow that will be created by the taskflow
object at runtime passing to task B. A subflow builder is
a lightweight object that inherits all graph building blocks
from static tasking. By default, a spawned subflow joins its
parent task. This forces a subflow to follow the subsequent
dependency constraints of its parent task. Depending on appli-
cations, users can detach a subflow from its parent task using
the method detach, allowing its execution to flow indepen-
dently. A detached subflow will eventually join the end of the
topology of its parent task.

Listings 6 and 7 compare two implementations of Fig. 4
using Cpp-Taskflow and TBB. In a rough view, Cpp-Taskflow
has the least amount of code (19 versus 38). Our user

Listing 5. TBB code of Fig. 3 (37 LOC and 295 tokens).

feedbacks lead us to believe that our dynamic tasking ends up
being cleaner and more expressive [8]. The subflow spawned
from a task belongs to the same graph of its parent task. Users
do not need to create a separate graph object to spawn dynamic
tasks as in TBB. While it is arguable which paradigm is bet-
ter, we have found it simpler and safer to stick with the same
graph, especially from the debugging aspect or when a subflow
goes nested or recursive.

A powerful feature of Cpp-Taskflow’s dynamic tasking is
nested subflow. Users can create a subflow inside a subflow
and so on to perform recursive compute patterns. Fig. 5 shows
a two-layer subflow example and Listing 8 demonstrates its
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Fig. 4. Dynamic task dependency graph of four static tasks (A, B, C, and D)
and three dynamic tasks (B1, B2, and B3).

Listing 6. Cpp-Taskflow code of Fig. 4 (19 LOC and 185 tokens).

implementation in Cpp-Taskflow. The static task A spawns a
subflow consisting of task A1 and task A2 at runtime. Then,
the task A2 spawns another subflow consisting of two tasks
A2_1 and A2_2 which join task A2. Our API to express this
nested flow is very straightforward as a result of our unified
interface for both static and dynamic tasking. Users can easily
exploit fine-grained task parallelism using nested subflow to
carry out dynamic parallel decomposition strategies, such as
pruning heuristics and recursive flows.

D. Task Graph Composition

Composability is a key component to improve program-
mers’ productivity in writing large-scale parallel applications.
Cpp-Taskflow allows users to compose a large graph from
small and modular parallel building blocks that can be
distributed to different layers of optimization [17]. Fig. 6
demonstrates a two-level hierarchy of graph composition. Its
implementation in Cpp-Taskflow is shown in Listing 9. This
example consists of two graphs, G1 and G2, where G1 consists
of four tasks and four dependencies, and G2 is composed of
G1 and other three tasks. The method composed_of creates

Listing 7. TBB code of Fig. 4 (38 LOC and 299 tokens).

a module task from an existing taskflow. A module task does
not owns or copies the taskflow but maintains a soft mapping
to a taskflow. Users create dependencies on a module task
in the same way as other tasks. Our runtime will expand the
associated taskflow graph with a module task and executes all
dependent tasks in all hierarcies. Similar to dynamic tasking,
our composition can be recursive and nested. This can largely
save space of tasks required for building graphs with repetitive
compute patterns.
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Fig. 5. Two-layer nested subflow (A and A2).

Listing 8. Cpp-Taskflow code of Fig. 5.

Fig. 6. Composition of task graphs.

E. Executor

Cpp-Taskflow separates the task graph construction and
execution in different classes. To execute a task graph,
users declare an executor object of type tf::Executor
and submit the task graph to the executor. An execu-
tor object manages a set of worker threads to schedule
and execute dependent tasks. By default, Cpp-Taskflow uses
std::thread::hardware_concurrency to decide the

Listing 9. Cpp-Taskflow code of Fig. 6.

Listing 10. Task graph execution methods in Cpp-Taskflow.

number of worker threads. In most cases, the number of work-
ers is equal to the number of logical cores on the machine.
Users can also specify the number of workers to construct an
executor. As shown in Listing 10, a task graph can be sub-
mitted to an executor in many ways. The simplest method
is to execute a graph once via the run method. Users can
also specify the number of executions via run_n or a stop-
ping binary predicate via run_until. All methods accept
an optional callback in the last argument to invoke after the
execution completes, and return a std::future for users
to access the execution status or create further continuation.
Issuing multiple runs on the same taskflow automatically syn-
chronize to a sequential chain of executions in the order of run
calls. The method wait_for_all blocks the executor until
all associated tasks finish. Executor is thread-safe. Touching
an executor from multiple threads is acceptable. Most applica-
tions need only one executor to which multiple threads submit
different task graphs each representing a particular parallel
decomposition of an algorithm.

By default, the executor employs work-stealing to sched-
ule and distribute tasks across CPU cores. Upon construction,
the executor spawns multiple worker threads. Each worker
iteratively drains out the tasks from its local queue and tran-
sitions to a thief to steal a task from a randomly selected
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peer called victim. When a task completes, it submits new
tasks from its immediate successors whichever dependencies
are met. The scheduler iterates this procedure until the pro-
gram terminates or no tasks are available. Work-stealing is
advantageous in decentralized controls over threads, provid-
ing improved performance by instantaneously balancing the
load among parallel processing units [18]. In short, our work-
stealing algorithm maintains an invariant of that at least one
thief is always running when an worker is actively running a
task. At the same time, we continuously adapt the number of
thieves above this lower limit to the available tasks to avoid
over- and under-subscription of thread resources.

F. Visualization

Cpp-Taskflow provides a built-in support for dumping a task
dependency to a standard DOT format. Developers can use
readily available tools such python GraphViz and Viz.js to
visualize the graphs without extra programming effort. We
also provide a customizable observer interface to let users
observe when a thread starts or stops participating in task
scheduling. From users’ perspective, these facilities largely
improve the ease of debugging and reduce the learning curve
of Cpp-Taskflow [8].

IV. EXPERIMENTAL RESULTS

We discuss the experimental results on two fronts, micro-
benchmarks and real-world applications. Micro-benchmarks
measure the sole tasking performance of each library on
processing two graph structures that represent regular and
irregular compute patterns. Next, we move to two real-world
CAD applications, VLSI timing analysis and detailed place-
ment, and one parallel machine learning workload. We will
show Cpp-Taskflow largely simplifies the developments of
realistic use-cases and boosts the performance that was not
possible using existing approaches. The quality of results
(QoRs) of our implementation remain the same as original
ones and we shall focus on the discussion of parallelism.
All experiments ran on a CentOS Linux 7.7.1908 machine
with 256 GB RAM and 64 AMD Opteron Processors at
2.1 GHz. We lock each thread to one CPU core by using
both 1) library-specific API to restrict the number of spawned
threads and 2) OS-level utilities (taskset) to affine the
running process to the same number of CPU cores. We com-
piled all programs using g++-8.2.0 with C++17 standards
-std=c++17 enabled. Due to the page limit, we considered
two industrial-strength libraries OpenMP 4.5 (task dependency
clause) and Intel TBB 2019 Update 2 (FlowGraph) as our
baseline to execute task dependency graphs [13], [14]. The
compiler provides the OpenMP support through the gcc tool
chain. All data is an average of ten runs, and is reproducible
at [8], [19], and [20].

Given the large amount of tasking libraries, it is imprac-
tical to compare Cpp-Taskflow with all of them. Instead, we
stick with OpenMP and TBB because of their abundant user
experiences and documentations. These activities prevent us
from making immature mistakes due to undocumented pitfalls
so we can make fair judgement. Also, OpenMP and TBB are

Fig. 7. Task dependency graph of a 2-D wavefront grid.

TABLE I
SOFTWARE COST COMPARISON ON MICRO-BENCHMARKS

widely used in CAD. The comparison is representative for
other problems that share similar performance characteristics
with CAD. In case readers are interested in comparison with
other third-party libraries, data can be found, and reproduced
in [8].

A. Micro-Benchmark

We consider two classic workloads: 1) wavefront computing
and 2) graph traversal. We modified the wavefront computing
pattern from the official TBB blog [21]. As shown in Fig. 7, a
2-D matrix is partitioned into a set of identical square blocks.
Each block is mapped to a task that performs a nominal opera-
tion with constant time complexity. The wavefront propagates
task dependencies monotonically from the top-left block to
the bottom-right block. Each task precedes one task to the
right and another below. In Fig. 7, blocks (tasks) with the
same color can run concurrently. The resulting task depen-
dency graph exhibits a regular structure along with the matrix
partition. On the other hand, the graph traversal benchmark
reads in a randomly generated graph and casts it to a task
dependency graph that performs a parallel traversal. Due to the
static property of OpenMP task dependency clause, we need to
write an exhaustive list to cover all combinations of input and
output degrees. To avoid blowing up the OpenMP code, we
limit each node to have at most four input and output edges.
This experiment mimics the existing OpenMP-based circuit
analysis methods and their limitations [9]. The resulting task
dependency graph represents an irregular compute pattern.

We begin by examining the software costs using the pop-
ular tools SLOCCount and Lizard [22], [23]. Compared with
OpenMP and TBB, Cpp-Taskflow achieves the least amount of
development efforts in terms of LOC and cyclomatic complex-
ity (see Table I). Our margin to a sequential baseline is also the
smallest. The top half of Fig. 8 shows the overall performance
of each library. Our measure includes library ramp-up time,
construction and execution of the task dependency graph, and
clean-up time. The top two plots show the runtime growth
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Fig. 8. Performance comparisons between Cpp-Taskflow, TBB, and OpenMP
on two micro-benchmarks.

with increasing problem size under 8 cores. In general, Cpp-
Taskflow scales up best. The performance margin to OpenMP
and TBB becomes larger as the problem size increases. For
instance, Cpp-Taskflow is 7.4× and 1.9× faster than OpenMP
and TBB in graph traversal at size 348K. Next, we compare
the performance between Cpp-Taskflow and TBB on different
number of cores at the largest problem size (262144 tasks in
wavefront and 711200 tasks in graph traversal). We skip the
comparison with OpenMP as it is slower than both TBB and
Cpp-Taskflow. As shown in the bottom half of Fig. 8, Cpp-
Taskflow is consistently faster than TBB regardless of core
numbers. Both libraries start to saturate at about eight cores.

B. VLSI Timing Analysis

We demonstrate the performance of Cpp-Taskflow in a real-
world VLSI timing analyzer. We consider our research project
OpenTimer, an open-source static timing analyzer that has
been used in many industrial and academic projects [19].
The first release v1 in 2015 implemented the levelization
algorithm (see Section II-D) using the OpenMP 4.5 task
dependency clause [9], [24]. To overcome the performance
bottleneck, we rewrote the core incremental timing engine
using Cpp-Taskflow in the recent release v2. Since OpenTimer
is a large project of more than 50K LOC, it is difficult to
rewrite the core with TBB. We focus on comparing with
OpenMP which had been available in v1. Table II measures
the software costs of two OpenTimer versions using the Linux
tool SLOCCount [22]. The cost and schedule estimates are
based on the constructive cost model (COCOMO) under the
organic mode—small teams with good experience working
on a research-driven environment [25]. In OpenTimer v2, a
large amount of exhaustive OpenMP dependency clauses that
were used to carry out task dependencies are now replaced
with only a few lines of flexible Cpp-Taskflow code (9123
versus 4482). The maximum cyclomatic complexity in a sin-
gle function is reduced from 58 to 20. We attribute this to

TABLE II
SOFTWARE COST OF OPENTIMER V1 AND V2

Fig. 9. Example task dependency graph of a single timing update. The black
path marks the most critical timing path.

Fig. 10. Runtime comparisons of the incremental timing between OpenTimer
v1 (OpenMP) and v2 (Cpp-Taskflow) for two circuits tv80 and vga_lcd under
16 cores.

Cpp-Taskflow’s programmability, which can affect the way
developers design efficient algorithms and parallel decom-
position strategies. For example, OpenTimer v1 relied on a
bucket-list data structure to model the task dependency in a
pipeline fashion using OpenMP. We found it very difficult to
go beyond this paradigm because of the insufficient support
for dynamic dependencies in OpenMP. With Cpp-Taskflow in
place, we can break this bottleneck and easily model both
static and dynamic task dependencies at programming time
and runtime. The task dependency graph flows computations
naturally and asynchronously with the timing graph, produc-
ing faster runtime performance. Fig. 9 shows an example task
dependency graph (critical path on black) that represent a
single timing update on a sample circuit.

Fig. 10 compares the performance between OpenTimer v1
and v2. We evaluated the runtime versus incremental iterations
under 16 cores on two industrial circuit designs tv80 (5.3K
gates and 5.3K nets) and vga_lcd (139.5K gates and 139.6K
nets) with 45 nm NanGate cell library [11]. Each incremen-
tal iteration refers a design modification followed by a timing
query to trigger a timing update. In v1, this includes the time
to reconstruct the data structure required by OpenMP to alter
the task dependencies. In v2, this includes the time to cre-
ate and launch a new task dependency graph to perform a
parallel timing update. As shown in Fig. 10, v2 is consis-
tently faster than v1. The maximum speed-up is 9.8× on tv80
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Fig. 11. Scalability and CPU profile of Cpp-Taskflow on two large circuits
netcard and leon3mp.

and 3.1× on vga_lcd. This also demonstrated the performance
of Cpp-Taskflow on batch jobs each consisting of a different
task pattern (average speed-up is 2.9× on tv80 and 2.0× on
vga_lcd). The fluctuation of the curve is caused by design
modifiers; some are local changes and others affect the entire
timing landscape giving rise to large task dependency graphs.
The scalability of Cpp-Taskflow is shown in Fig. 11. We used
two million-scale designs, netcard (1.4M gates) and leon3mp
(1.2M gates) from the OpenCores [11], to evaluate the runtime
of v1 and v2 across different number of cores. There are two
important observations. First, v2 is slightly slower than v1 at
one core (3%–4%), where all OpenMP’s constructs are literally
disabled. This shows the graph overhead of Cpp-Taskflow; yet
it is negligible. Second, v2 is consistently faster than v1 regard-
less of core counts except one. This justifies Cpp-Taskflow’s
programming model largely improved the design of a par-
allel VLSI timing analyzer that would not be possible with
OpenMP.

Both Cpp-Taskflow and OpenMP stagnate at about ten
cores. There are many factors that affects the scalability. First,
the structure of a timing graph dominates the maximum par-
allelism. For example, Fig. 9 has 17 tasks, but it cannot
scale to 17 cores due to dependencies between pins. Such
constraints are decided by circuit graph structures. Second,
timing is not data-intensive. During incremental timing, data
can arrive intensively or sparsely. Computational patterns are
highly irregular and graph-oriented. It is less likely to have a
linear strong scalability over increasing problem size that often
relies on SIMD-styled parallelism (e.g., matrix operations).

C. VLSI Detailed Placement

We demonstrate the performance of Cpp-Taskflow in a real-
world VLSI detailed placement engine, DREAMPlace [20].
Detailed placement is an important step in VLSI backend
design to locally refine the physical locations of logic gates
or cells for minimal wirelength. It often needs to be invoked
many times in different stages of the optimization flow, and
the algorithm efficiency is very critical for fast design clo-
sure. Fig. 12 shows an example of detailed placement on a
physical layout. Mainstream detailed placement algorithms are
based on iterative local reordering [20], [26], [27]. Fig. 13
presents a common matching-based algorithm. The key idea
is to extract a maximal independent set (marked in cyan) from
a cell set and model the wirelength minimization problem on
these nonoverlapped cells into a weighted bipartite matching

Fig. 12. Example of VLSI layout for detailed placement and the execution
of the local reordering algorithm. The blue rectangles denote the movable
logic gates for detailed placement. The gray ones denote fixed components
that cannot be moved. The brown ones denote the primary IO pins of the
circuit. Logic gates are physically aligned to placement rows. A VLSI circuit
can be viewed as a hypergraph with logic gates incident to hyperedges. The
interconnections between gates are not drawn for brevity.

(a) (b)

(c)

Fig. 13. Matching-based detailed placement algorithm. (a) Example of
placed cells and their interconnects. Independent cells are marked in cyan.
(b) Weighted bipartite matching to find the best permutation of cell locations.
(c) Three-step iterative implementation of the algorithm. During the execution
of the algorithm, step 1 of the next iteration can overlap with step 3 of the
current iteration.

graph. The entire process is very time-consuming especially
for large designs with millions of cells. A typical implemen-
tation iterates the following three steps: 1) a parallel maximal
independent set finding step using Blelloch’s Algorithm [28];
2) a sequential partitioning step to cluster adjacent cells; and
3) a parallel bipartite matching step to find the best per-
mutation of cell locations. Fig. 13(c) illustrates the process.
Many CAD algorithms resemble such techniques to exploit
parallelism under net-to-net dependencies [29].

We implemented the detailed placement algorithm in two
versions, TBB and Cpp-Taskflow, on top of the DREAMPlace
facility [20]. DREAMPlace is a modern placement engine
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Fig. 14. Partial task graph for the detailed placement algorithm in Fig. 13.
Steps of two consecutive iterations overlap in the task graph.

TABLE III
SOFTWARE COST COMPARISON BETWEEN TBB
AND CPP-TASKFLOW ON DETAILED PLACEMENT

that incorporate advanced parallel algorithms to gain signif-
icant runtime benefits. We leveraged Cpp-Taskflow’s dynamic
tasking to describe the iterative process of the algorithm. An
example of the computation graph is shown in Fig. 14. Since
TBB does not support condition tasks, we expand the task
graph along iterations to form a flat hierarchy. In fact, most
existing programming frameworks promote this workaround
as a de-facto solution for dynamic control flows [4]. Table III
compares the software cost between TBB and Cpp-Taskflow
using the Linux tool SLOCCount under the organic mode [22].
In terms of LOC, Cpp-Taskflow is 28.5% fewer than TBB
(and 37.1% fewer tokens). We attribute this saving to condi-
tion tasks, by which we are able to express the iterative process
in a cyclic task graph, rather than flatterning the control flows
across iterations. In the later case, extra programming efforts
cause the TBB code to produce a much larger cyclomatic
complexity than Cpp-Taskflow (51 versus 33).

We evaluate the performance on ISPD 2005 placement con-
test benchmarks [30]. For brevity, we use c1–c8 to represent
the eight circuits, adaptec1–adaptec4, and bigblue1–bigblue4,

Fig. 15. Performance comparison between between Cpp-Taskflow and TBB
on ISPD 2005 benchmarks [30].

respectively. The top half of Fig. 15 draws the runtime and
memory comparison between Cpp-Taskflow and TBB on the
eight circuits under 40 cores and 100 iterations. The memory
value is measured at the maximum resident set size reported
by the Linux utility time. In both cases, Cpp-Taskflow out-
performed TBB across all circuits. The largest margin we
observed in runtime is 47.81% on c6 (48.19 versus 25.15 s).
The memory usage of Cpp-Taskflow is about 3.8–4.4× fewer
than TBB. Take c8 for example, Cpp-Taskflow reached the
goal using only 5.73 GB memory whereas TBB requires
24.33 GB (4.24× more). We can clearly see the advantage of
our dynamic tasking in handling dynamic and iterative con-
trol flows. The bottom half of Fig. 15 scales the runtime with
increasing cores (fixed 100 iterations) and placement iterations
(fixed 40 cores). We can observe Cpp-Taskflow is consistently
faster and more scalable than TBB in all scenarios.

D. Machine Learning

We applied Cpp-Taskflow to speed up the training of a
deep neural network (DNN) classifier on the famous MNIST
dataset [31]. Training a DNN is an extremely compute-
intensive process and exposes many types of parallelism
at different levels. For example, the well-know TensorFlow
library permit users to alter inter- and intra-operation paral-
lelism [32]. Users can further employ advanced data structures
(e.g., RunQueue) to control threads to enable more fine-
grained parallelism. However, these separate and low-level
concurrency controls impose large burden to users even for
experienced developers [?]. The goal of this experiment is
thus to investigate a task-based approach to simplify the
development of parallel machine learning.

We considered two DNN architectures, three layers
(784×32×32×10) and five layers (784×64×32×16×8×10).
We used a gradient descent optimizer with a mini-batch size
100 and 0.001 learning rate on a training set of 60K images.
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Fig. 16. Parallel task decomposition strategy for DNN training.

TABLE IV
SOFTWARE COST COMPARISON ON MACHINE LEARNING

These parameters are inspired from the official TensorFlow
MNIST example [32]. We adopted a coarse-grained task
decomposition strategy that is applicable to any parallel train-
ing frameworks (see Fig. 16). First, we group the backward
propagation into two tasks, gradient calculation (Gi) and
weight update (Ui), and pipeline these tasks layer by layer.
Second, we create a task for per-epoch data shuffle to enable
epoch-level parallelism (Ei_Sj). To avoid too much memory
overhead in storing shuffled data, we limit the degree of stor-
ages to twice the number of threads. Spare threads can start
shuffling the data for subsequent epochs. Indeed, shuffling the
data can be very time-consuming especially when applica-
tions adopt complex algorithms to randomize data blocks to
improve the stochastic gradient descent. All matrix operations
are written in Eigen-3.3.7 [33].

Table IV presents the software costs (reported by
SLOCCount and Lizard [22], [23]) of Cpp-Taskflow, OpenMP,
and TBB in implementing our core parallel decomposition
strategy. In general, Cpp-Taskflow has the fewest LOC and
the lowest cyclomatic complexity. The development effort is
measured by the time it took for an experienced programmer
(7-year C++ and 2-year machine learning practice) to fin-
ish each implementation. TBB’s programming model is very
similar to Cpp-Taskflow and thus both took roughly the same
time to develop (3 h). However, it is tricky to implement the
task dependency graph with OpenMP. In order to ensure proper
dependencies between tasks, we need to hard-code an order of
task dependency clauses that is only specific to a DNN archi-
tecture. The development time was twice longer than that of
Cpp-Taskflow. In fact, most time was spent on debugging the
order of dependent tasks. This measurement can be subjective,

Fig. 17. Performance comparison between Cpp-Taskflow, TBB, and OpenMP
on training two different DNN classifiers.

but it does highlight the impact of a library’s task model on
engineering productivity.

Fig. 17 shows the overall performance of each library
on training the two DNN architectures. Each epoch con-
sists of 4201 tasks and 6601 tasks for the three-layer DNN
and the five-layer DNN, respectively. All libraries reached
performance saturation at about 8–16 cores. Under 16 cores,
Cpp-Taskflow is consistently faster than OpenMP and TBB on
both DNN architectures, regardless of the number of training
epochs. The margin becomes even larger when we increase the
epoch count. While the scalability is mostly dominated by the
maximum concurrency of the training graph, Cpp-Taskflow is
faster than others under different core numbers (see Fig. 17).
For example, Cpp-Taskflow finished the training of the three-
layer DNN by 1.38× and 1.14× faster than OpenMP and TBB
under 16 cores. Similar trends can also be observed at other
CPU core configurations. The performance of all implemen-
tations saturate at about 16 cores. In summary, Cpp-Taskflow
achieved the best software costs, performance, and scalability.

V. RELATED WORK

Cpp-Taskflow is mostly related to OpenMP task depen-
dency clause and TBB FlowGraph. In OpenMP 4.0, the task
group and depend clause (depend(type : list)) were
included into its directives [13]. The clause allows users to
define lists of data items that are only inputs, only outputs, or
both to form a task dependency graph. The biggest problem
of this paradigm is the programmability. Users need a descent
understanding about the graph structure in order to annotate
tasks in a specific order consistent with the sequential execu-
tion. Also, OpenMP has very limited support for increasingly
adopted C++14 and C++17 standards. This is unfortunate
as these new standards largely help the development of every
kind of applications. Similar issues exist in other directive-
driven libraries such as Cilk, Ompss, Cells, SMPSs, and

Authorized licensed use limited to: The University of Utah. Downloaded on September 03,2021 at 18:13:54 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: Cpp-TASKFLOW: GENERAL-PURPOSE PARALLEL TASK PROGRAMMING SYSTEM AT SCALE 1699

Nanos++ [34]–[37]. On the other hand, Intel released in 2017
the TBBs library that supports loop-level parallelism and task-
based programming (FlowGraph) [14]. The TBB task model
is object-oriented. It supports a variety of methods to cre-
ate a highly optimized flow graph and provides users runtime
interaction with the scheduler. Nevertheless, TBB does have
drawbacks, mostly from an ease-of-programming standpoint.
Because of various supports, the TBB task graph description
language is very complex and can often result in handwritten
code which are hard to debug and read.

The high-performance computing (HPC) community has long
been managing task-based programming frameworks. Many of
such systems are inspired by scientific computing and clus-
ters. Chapel, X10, Charm++, HPX, and Legion introduced
new domain specific languages (DSLs) and runtime to support
tasking in a global address space (GAS) environment [38]–[42].
QURAK, StarPU, PaRSEC, and ParalleX are capable of track-
ing data between different memory and scheduling tasks on
heterogeneous resources [43]–[46]. While these systems are
orthogonal to Cpp-Taskflow, we are leveraging their experience
to handle new types of workload.

VI. CONCLUSION

In this article, we have presented Cpp-Taskflow, a high-
performance task programming system to streamline parallel
processing. Cpp-Taskflow leverages modern C++ to enable
efficient implementations of parallel decomposition strategies
for both regular loop-based parallelism and irregular pat-
terns such as graph algorithms and dynamic control flows.
We have evaluated Cpp-Taskflow on both micro-benchmarks
and real-world applications, including VLSI design automation
problems and machine learning. Results have shown promis-
ing performance and scalability of Cpp-Taskflow over two
industrial-strength libraries, OpenMP Tasking, and Intel TBBs
FlowGraph. On a VLSI detailed placement example, Cpp-
Taskflow achieved 10%–30% speed-up over OpenMP with
similar coding complexity.

Our future work focuses on applying Cpp-Taskflow to
express heterogeneous timing analysis algorithms [47], [48]
and speed up large-scale machine learning problems using
task graph parallelism [49]. In addition, we are extending Cpp-
Taskflow to a distributed environment based on our distributed
execution engine, DtCraft [50].
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