Parallel Reduction
Taskflow provides standard template methods for reducing a range of items on a CUDA GPU.
Include the Header
You need to include the header file, taskflow/cuda/algorithm/reduce.hpp
, for using the parallel-reduction algorithm.
#include <taskflow/cuda/algorithm/reduce.hpp>
Reduce a Range of Items with an Initial Value
tf::[first, last)
using the binary operator bop
and stores the reduced result in result
. It represents the parallel execution of the following reduction loop on a GPU:
while (first != last) { *result = bop(*result, *first++); }
The variable result
participates in the reduction loop and must be initialized with an initial value. The following code performs a parallel reduction to sum all the numbers in the given range with an initial value 1000
:
const size_t N = 1000000; int* res = tf::cuda_malloc_shared<int>(1); // result int* vec = tf::cuda_malloc_shared<int>(N); // vector // initializes the data *res = 1000; for(size_t i=0; i<N; i++) vec[i] = i; } // create an execution policy tf::cudaStream stream; tf::cudaDefaultExecutionPolicy policy(stream); // queries the required buffer size to reduce N elements using the given policy auto bytes = policy.reduce_bufsz<int>(N); auto buffer = tf::cuda_malloc_device<std::byte>(bytes); // *res = 1000 + (0 + 1 + 2 + 3 + 4 + ... + N-1) tf::cuda_reduce(policy, vec, vec + N, res, [] __device__ (int a, int b) { return a + b; }, buffer ); // synchronize the execution stream.synchronize(); // delete the memory cudaFree(buffer); cudaFree(res); cudaFree(vec);
The reduce algorithm runs asynchronously through the stream specified in the execution policy. You need to synchronize the stream to obtain correct results. Since the GPU reduction algorithm may require extra buffer to store the temporary results, you need to provide a buffer of size at least larger or equal to the value returned from tf::
.
Reduce a Range of Items without an Initial Value
tf::
*result = *first++; // no initial values to participate in the reduction loop while (first != last) { *result = bop(*result, *first++); }
The variable result
is directly assigned the reduced value without any initial value participating in the reduction loop. The following code performs a parallel reduction to sum all the numbers in the given range without any initial value:
const size_t N = 1000000; int* res = tf::cuda_malloc_shared<int>(1); // result int* vec = tf::cuda_malloc_shared<int>(N); // vector // initializes the data for(size_t i=0; i<N; i++) vec[i] = i; } // create an execution policy tf::cudaStream stream; tf::cudaDefaultExecutionPolicy policy(stream); // queries the required buffer size to reduce N elements using the given policy auto bytes = policy.reduce_bufsz<int>(N); auto buffer = tf::cuda_malloc_device<std::byte>(bytes); // *res = 0 + 1 + 2 + 3 + 4 + ... + N-1 tf::cuda_uninitialized_reduce(policy, vec, vec + N, res, [] __device__ (int a, int b) { return a + b; }, buffer ); // synchronize the execution stream.synchronize(); // delete the buffer cudaFree(res); cudaFree(vec); cudaFree(buffer);
Reduce a Range of Transformed Items with an Initial Value
tf::[first, last)
using a binary reduce operator bop
and a unary transform operator uop
. It represents the parallel execution of the following reduction loop on a GPU:
while (first != last) { *result = bop(*result, uop(*first++)); }
The variable result
participates in the reduction loop and must be initialized with an initial value. The following code performs a parallel reduction to sum all the transformed numbers multiplied by 10
in the given range with an initial value 1000
:
const size_t N = 1000000; int* res = tf::cuda_malloc_shared<int>(1); // result int* vec = tf::cuda_malloc_shared<int>(N); // vector // initializes the data *res = 1000; for(size_t i=0; i<N; i++) { vec[i] = i; } // create an execution policy tf::cudaStream stream; tf::cudaDefaultExecutionPolicy policy(stream); // queries the required buffer size to reduce N elements using the given policy auto bytes = policy.reduce_bufsz<int>(N); auto buffer = tf::cuda_malloc_device<std::byte>(bytes); // *res = 1000 + (0*10 + 1*10 + 2*10 + 3*10 + 4*10 + ... + (N-1)*10) tf::cuda_transform_reduce(policy, vec, vec + N, res, [] __device__ (int a, int b) { return a + b; }, [] __device__ (int a) { return a*10; }, buffer ); // synchronize the execution stream.synchronize(); // delete the buffer cudaFree(res); cudaFree(vec); cudaFree(buffer);
Reduce a Range of Transformed Items without an Initial Value
tf::cuda_transform_uninitialized_reduce performs a parallel reduction over a range of transformed items without an initial value. This method represents a parallel execution of the following reduction loop on a GPU:
*result = *first++; // no initial values to participate in the reduction loop while (first != last) { *result = bop(*result, uop(*first++)); }
The variable result
is directly assigned the reduced value without any initial value participating in the reduction loop. The following code performs a parallel reduction to sum all the transformed numbers multiplied by 10
in the given range without any initial value:
const size_t N = 1000000; int* res = tf::cuda_malloc_shared<int>(1); // result int* vec = tf::cuda_malloc_shared<int>(N); // vector // initializes the data for(size_t i=0; i<N; i++) { vec[i] = i; } // create an execution policy tf::cudaStream stream; tf::cudaDefaultExecutionPolicy policy(stream); // queries the required buffer size to reduce N elements using the given policy auto bytes = policy.reduce_bufsz<int>(N); auto buffer = tf::cuda_malloc_device<std::byte>(bytes); // *res = 0*10 + 1*10 + 2*10 + 3*10 + 4*10 + ... + (N-1)*10 tf::cuda_uninitialized_reduce(policy, vec, vec + N, res, [] __device__ (int a, int b) { return a + b; }, [] __device__ (int a) { return a*10; }, buffer ); // synchronize the execution stream.synchronize(); // delete the data cudaFree(res); cudaFree(vec); cudaFree(buffer);