class
#include <taskflow/cuda/cuda_capturer.hpp>
cudaFlowCapturer class to create a cudaFlow graph using stream capture
The usage of tf::task_1
and task_2
, where task_1
runs before task_2
.
taskflow.emplace([](tf::cudaFlowCapturer& capturer){ // capture my_kernel_1 through the given stream managed by the capturer auto task_1 = capturer.on([&](cudaStream_t stream){ my_kernel_1<<<grid_1, block_1, shm_size_1, stream>>>(my_parameters_1); }); // capture my_kernel_2 through the given stream managed by the capturer auto task_2 = capturer.on([&](cudaStream_t stream){ my_kernel_2<<<grid_2, block_2, shm_size_2, stream>>>(my_parameters_2); }); task_1.precede(task_2); });
Similar to tf::
Please refer to GPU Tasking (cudaFlowCapturer) for details.
Constructors, destructors, conversion operators
- cudaFlowCapturer() defaulted
- constructs a standalone cudaFlowCapturer
- ~cudaFlowCapturer() defaulted
- destructs the cudaFlowCapturer
- cudaFlowCapturer(cudaFlowCapturer&&) defaulted
- default move constructor
Public functions
- auto operator=(cudaFlowCapturer&&) -> cudaFlowCapturer& defaulted
- default move assignment operator
- auto empty() const -> bool
- queries the emptiness of the graph
- auto num_tasks() const -> size_t
- queries the number of tasks
- void clear()
- clear this cudaFlow capturer
-
void dump(std::
ostream& os) const - dumps the cudaFlow graph into a DOT format through an output stream
-
void dump_native_graph(std::
ostream& os) const - dumps the native captured graph into a DOT format through an output stream
-
template<typename C, std::enable_if_t<std::is_invocable_r_v<void, C, cudaStream_t>, void>* = nullptr>auto on(C&& callable) -> cudaTask
- captures a sequential CUDA operations from the given callable
-
template<typename C, std::enable_if_t<std::is_invocable_r_v<void, C, cudaStream_t>, void>* = nullptr>void on(cudaTask task, C&& callable)
- updates a capture task to another sequential CUDA operations
- auto noop() -> cudaTask
- captures a no-operation task
- void noop(cudaTask task)
- updates a task to a no-operation task
- auto memcpy(void* dst, const void* src, size_t count) -> cudaTask
- copies data between host and device asynchronously through a stream
- void memcpy(cudaTask task, void* dst, const void* src, size_t count)
- updates a capture task to a memcpy operation
-
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>auto copy(T* tgt, const T* src, size_t num) -> cudaTask
- captures a copy task of typed data
-
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>void copy(cudaTask task, T* tgt, const T* src, size_t num)
- updates a capture task to a copy operation
- auto memset(void* ptr, int v, size_t n) -> cudaTask
- initializes or sets GPU memory to the given value byte by byte
- void memset(cudaTask task, void* ptr, int value, size_t n)
- updates a capture task to a memset operation
-
template<typename F, typename... ArgsT>auto kernel(dim3 g, dim3 b, size_t s, F f, ArgsT && ... args) -> cudaTask
- captures a kernel
-
template<typename F, typename... ArgsT>void kernel(cudaTask task, dim3 g, dim3 b, size_t s, F f, ArgsT && ... args)
- updates a capture task to a kernel operation
-
template<typename C>auto single_task(C c) -> cudaTask
- capturers a kernel to runs the given callable with only one thread
-
template<typename C>void single_task(cudaTask task, C c)
- updates a capture task to a single-threaded kernel
-
template<typename I, typename C>auto for_each(I first, I last, C callable) -> cudaTask
- captures a kernel that applies a callable to each dereferenced element of the data array
-
template<typename I, typename C>void for_each(cudaTask task, I first, I last, C callable)
- updates a capture task to a for-each kernel task
-
template<typename I, typename C>auto for_each_index(I first, I last, I step, C callable) -> cudaTask
- captures a kernel that applies a callable to each index in the range with the step size
-
template<typename I, typename C>void for_each_index(cudaTask task, I first, I last, I step, C callable)
- updates a capture task to a for-each-index kernel task
-
template<typename I, typename O, typename C>auto transform(I first, I last, O output, C op) -> cudaTask
- captures a kernel that transforms an input range to an output range
-
template<typename I, typename O, typename C>void transform(cudaTask task, I first, I last, O output, C op)
- updates a capture task to a transform kernel task
-
template<typename I1, typename I2, typename O, typename C>auto transform(I1 first1, I1 last1, I2 first2, O output, C op) -> cudaTask
- captures a kernel that transforms two input ranges to an output range
-
template<typename I1, typename I2, typename O, typename C>void transform(cudaTask task, I1 first1, I1 last1, I2 first2, O output, C op)
- updates a capture task to a transform kernel task
-
template<typename OPT, typename... ArgsT>auto make_optimizer(ArgsT && ... args) -> OPT&
- selects a different optimization algorithm
- auto capture() -> cudaGraph_t
- captures the cudaFlow and turns it into a CUDA Graph
- void run(cudaStream_t stream)
- offloads the cudaFlowCapturer onto a GPU asynchronously via a stream
- auto native_graph() -> cudaGraph_t
- acquires a reference to the underlying CUDA graph
- auto native_executable() -> cudaGraphExec_t
- acquires a reference to the underlying CUDA graph executable
Function documentation
tf:: cudaFlowCapturer:: cudaFlowCapturer() defaulted
constructs a standalone cudaFlowCapturer
A standalone cudaFlow capturer does not go through any taskflow and can be run by the caller thread using tf::
template<typename C, std::enable_if_t<std::is_invocable_r_v<void, C, cudaStream_t>, void>* = nullptr>
cudaTask tf:: cudaFlowCapturer:: on(C&& callable)
captures a sequential CUDA operations from the given callable
Template parameters | |
---|---|
C | callable type constructible with std::function<void(cudaStream_t)> |
Parameters | |
callable | a callable to capture CUDA operations with the stream |
This methods applies a stream created by the flow to capture a sequence of CUDA operations defined in the callable.
template<typename C, std::enable_if_t<std::is_invocable_r_v<void, C, cudaStream_t>, void>* = nullptr>
void tf:: cudaFlowCapturer:: on(cudaTask task,
C&& callable)
updates a capture task to another sequential CUDA operations
The method is similar to cudaFlowCapturer::
cudaTask tf:: cudaFlowCapturer:: noop()
captures a no-operation task
Returns | a tf:: |
---|
An empty node performs no operation during execution, but can be used for transitive ordering. For example, a phased execution graph with 2 groups of n
nodes with a barrier between them can be represented using an empty node and 2*n
dependency edges, rather than no empty node and n^2
dependency edges.
void tf:: cudaFlowCapturer:: noop(cudaTask task)
updates a task to a no-operation task
The method is similar to tf::
cudaTask tf:: cudaFlowCapturer:: memcpy(void* dst,
const void* src,
size_t count)
copies data between host and device asynchronously through a stream
Parameters | |
---|---|
dst | destination memory address |
src | source memory address |
count | size in bytes to copy |
The method captures a cudaMemcpyAsync
operation through an internal stream.
void tf:: cudaFlowCapturer:: memcpy(cudaTask task,
void* dst,
const void* src,
size_t count)
updates a capture task to a memcpy operation
The method is similar to cudaFlowCapturer::
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
cudaTask tf:: cudaFlowCapturer:: copy(T* tgt,
const T* src,
size_t num)
captures a copy task of typed data
Template parameters | |
---|---|
T | element type (non-void) |
Parameters | |
tgt | pointer to the target memory block |
src | pointer to the source memory block |
num | number of elements to copy |
Returns | cudaTask handle |
A copy task transfers num*sizeof(T)
bytes of data from a source location to a target location. Direction can be arbitrary among CPUs and GPUs.
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
void tf:: cudaFlowCapturer:: copy(cudaTask task,
T* tgt,
const T* src,
size_t num)
updates a capture task to a copy operation
The method is similar to cudaFlowCapturer::
cudaTask tf:: cudaFlowCapturer:: memset(void* ptr,
int v,
size_t n)
initializes or sets GPU memory to the given value byte by byte
Parameters | |
---|---|
ptr | pointer to GPU memory |
v | value to set for each byte of the specified memory |
n | size in bytes to set |
The method captures a cudaMemsetAsync
operation through an internal stream to fill the first count
bytes of the memory area pointed to by devPtr
with the constant byte value value
.
void tf:: cudaFlowCapturer:: memset(cudaTask task,
void* ptr,
int value,
size_t n)
updates a capture task to a memset operation
The method is similar to cudaFlowCapturer::
template<typename F, typename... ArgsT>
cudaTask tf:: cudaFlowCapturer:: kernel(dim3 g,
dim3 b,
size_t s,
F f,
ArgsT && ... args)
captures a kernel
Template parameters | |
---|---|
F | kernel function type |
ArgsT | kernel function parameters type |
Parameters | |
g | configured grid |
b | configured block |
s | configured shared memory size in bytes |
f | kernel function |
args | arguments to forward to the kernel function by copy |
Returns | cudaTask handle |
template<typename F, typename... ArgsT>
void tf:: cudaFlowCapturer:: kernel(cudaTask task,
dim3 g,
dim3 b,
size_t s,
F f,
ArgsT && ... args)
updates a capture task to a kernel operation
The method is similar to cudaFlowCapturer::
template<typename C>
cudaTask tf:: cudaFlowCapturer:: single_task(C c)
capturers a kernel to runs the given callable with only one thread
Template parameters | |
---|---|
C | callable type |
Parameters | |
c | callable to run by a single kernel thread |
template<typename C>
void tf:: cudaFlowCapturer:: single_task(cudaTask task,
C c)
updates a capture task to a single-threaded kernel
This method is similar to cudaFlowCapturer::
template<typename I, typename C>
cudaTask tf:: cudaFlowCapturer:: for_each(I first,
I last,
C callable)
captures a kernel that applies a callable to each dereferenced element of the data array
Template parameters | |
---|---|
I | iterator type |
C | callable type |
Parameters | |
first | iterator to the beginning |
last | iterator to the end |
callable | a callable object to apply to the dereferenced iterator |
Returns | cudaTask handle |
This method is equivalent to the parallel execution of the following loop on a GPU:
for(auto itr = first; itr != last; i++) { callable(*itr); }
template<typename I, typename C>
void tf:: cudaFlowCapturer:: for_each(cudaTask task,
I first,
I last,
C callable)
updates a capture task to a for-each kernel task
This method is similar to cudaFlowCapturer::
template<typename I, typename C>
cudaTask tf:: cudaFlowCapturer:: for_each_index(I first,
I last,
I step,
C callable)
captures a kernel that applies a callable to each index in the range with the step size
Template parameters | |
---|---|
I | index type |
C | callable type |
Parameters | |
first | beginning index |
last | last index |
step | step size |
callable | the callable to apply to each element in the data array |
Returns | cudaTask handle |
This method is equivalent to the parallel execution of the following loop on a GPU:
// step is positive [first, last) for(auto i=first; i<last; i+=step) { callable(i); } // step is negative [first, last) for(auto i=first; i>last; i+=step) { callable(i); }
template<typename I, typename C>
void tf:: cudaFlowCapturer:: for_each_index(cudaTask task,
I first,
I last,
I step,
C callable)
updates a capture task to a for-each-index kernel task
This method is similar to cudaFlowCapturer::
template<typename I, typename O, typename C>
cudaTask tf:: cudaFlowCapturer:: transform(I first,
I last,
O output,
C op)
captures a kernel that transforms an input range to an output range
Template parameters | |
---|---|
I | input iterator type |
O | output iterator type |
C | unary operator type |
Parameters | |
first | iterator to the beginning of the input range |
last | iterator to the end of the input range |
output | iterator to the beginning of the output range |
op | unary operator to apply to transform each item in the range |
Returns | cudaTask handle |
This method is equivalent to the parallel execution of the following loop on a GPU:
while (first != last) { *output++ = op(*first++); }
template<typename I, typename O, typename C>
void tf:: cudaFlowCapturer:: transform(cudaTask task,
I first,
I last,
O output,
C op)
updates a capture task to a transform kernel task
This method is similar to cudaFlowCapturer::
template<typename I1, typename I2, typename O, typename C>
cudaTask tf:: cudaFlowCapturer:: transform(I1 first1,
I1 last1,
I2 first2,
O output,
C op)
captures a kernel that transforms two input ranges to an output range
Template parameters | |
---|---|
I1 | first input iterator type |
I2 | second input iterator type |
O | output iterator type |
C | unary operator type |
Parameters | |
first1 | iterator to the beginning of the input range |
last1 | iterator to the end of the input range |
first2 | iterato |
output | iterator to the beginning of the output range |
op | binary operator to apply to transform each pair of items in the two input ranges |
Returns | cudaTask handle |
This method is equivalent to the parallel execution of the following loop on a GPU:
while (first1 != last1) { *output++ = op(*first1++, *first2++); }
template<typename I1, typename I2, typename O, typename C>
void tf:: cudaFlowCapturer:: transform(cudaTask task,
I1 first1,
I1 last1,
I2 first2,
O output,
C op)
updates a capture task to a transform kernel task
This method is similar to cudaFlowCapturer::
template<typename OPT, typename... ArgsT>
OPT& tf:: cudaFlowCapturer:: make_optimizer(ArgsT && ... args)
selects a different optimization algorithm
Template parameters | |
---|---|
OPT | optimizer type |
ArgsT | arguments types |
Parameters | |
args | arguments to forward to construct the optimizer |
Returns | a reference to the optimizer |
We currently supports the following optimization algorithms to capture a user-described cudaFlow:
By default, tf::
void tf:: cudaFlowCapturer:: run(cudaStream_t stream)
offloads the cudaFlowCapturer onto a GPU asynchronously via a stream
Parameters | |
---|---|
stream | stream for performing this operation |
Offloads the present cudaFlowCapturer onto a GPU asynchronously via the given stream.
An offloaded cudaFlowCapturer forces the underlying graph to be instantiated. After the instantiation, you should not modify the graph topology but update node parameters.